檢索演算法
『壹』 運動估計的搜索演算法
匹配誤差函數,可以用各種優化方法進行最小化,這就需要我們開發出高效的運動搜索演算法,
主要的幾種演算法歸納如下: 為當前幀的一個給定塊確定最優位移矢量的全局搜索演算法方法是:在一個預先定義的搜索區域
內,把它與參考幀中所有的候選塊進行比較,並且尋找具有最小匹配誤差的一個。這兩個塊之間的
位移就是所估計的 MV,這樣做帶來的結果必然導致極大的計算量。
選擇搜索區域一般是關於當前塊對稱的,左邊和右邊各有 Rx 個像素,上邊和下邊各有 Ry個像素。
如果已知在水平和垂直方向運動的動態范圍是相同的,那麼 Rx=Ry=R。估計的精度是由搜索的步長決定的,步長是相鄰兩個候選塊在水平或者垂直方向上的距離。通常,沿著兩個方向使用相同的步長。在最簡單的情況下,步長是一個像素,稱為整數像素精度搜索,該種演算法也稱為無損搜索演算法。 由於在窮盡塊匹配演算法中搜索相應塊的步長不一定是整數,一般來說,為了實現 1/K像素步長,對參考幀必須進行 K倍內插。根據實驗證明,與整像素精度搜索相比,半像素精度搜索在估計精度上有很大提高,特別是對於低清晰度視頻。
但是,應用分數像素步長,搜索演算法的復雜性大大增加,例如,使用半像素搜索,搜索點的總數比整數像素精度搜索大四倍以上。
那麼,如何確定適合運動估計的搜索步長,對於視頻編碼的幀間編碼來說,即使得預測誤差最小化。 快速搜索演算法和全局搜索演算法相比,雖然只能得到次最佳的匹配結果,但在減少運算量方面效果顯著。
1) 二維對數搜索法
這種演算法的基本思路是採用大菱形搜索模式和小菱形搜索模式,步驟如圖 6.4.20 所示,從相應於零位移的位置開始搜索,每一步試驗菱形排列的五個搜索點。下一步,把中心移到前一步找到的最佳匹配點並重復菱形搜索。當最佳匹配點是中心點或是在最大搜索區域的邊界上時,就減小搜索步長(菱形的半徑) 。否則步長保持不變。當步長減小到一個像素時就到達了最後一步,並且在這最
後一步檢驗九個搜索點。初始搜索步長一般設為最大搜索區域的一半。
其後這類演算法在搜索模式上又做了比較多的改進,在搜索模式上採用了矩形模式,還有六邊形模式、十字形模式等等。
2) 三步搜索法
這種搜索的步長從等於或者略大於最大搜索范圍的一半開始。第一步,在起始點和周圍八個 「1」標出的點上計算匹配誤差,如果最小匹配誤差在起始點出現,則認為沒有運動;第二步,以第一步中匹配誤差最小的點(圖中起始點箭頭指向的「1」)為中心,計算以「2」標出的 8個點處的匹配誤差。注意,在每一步中搜索步長搜都比上一步長減少一半,以得到更准確的估計;在第三步以後就能得到最終的估計結果,這時從搜索點到中心點的距離為一個像素。
但是,上述一些快速演算法更適合用於估計運動幅度比較大的場合,對於部分運動幅度小的場合,它們容易落入局部最小值而導致匹配精度很差,已經有很多各種各樣的視頻流證明了這一點。
現在,針對這一缺點,國內外諸多專家學者也提出了相應的應對措施,特別是針對H.264編碼標准要求的一些快速演算法的改進,並取得卓越的效果。例如[7]中提到的基於全局最小值具有自適應性的快速演算法,這種演算法通過在每一搜索步驟選擇多個搜索結果,基於這些搜索結果之間的匹配誤差的不同得到的最佳搜索點,因而可以很好地解決落入局部最小值的問題。
[8]中提到一種適用於H.264的基於自適應搜索范圍的快速運動估計演算法,經過實驗證明對於如salesman等中小運動序列,其速度可接近全局搜索演算法的400倍,接近三步搜索演算法的4倍;而對於大運動序列,如table tennis,該演算法則會自動調節搜索點數以適應復雜的運動。當從總體上考察速度方面的性能時,可以看到,該演算法平均速度是全局搜索演算法的287.4倍,三步搜索的2.8倍。 分級搜索演算法的基本思想是從最低解析度開始逐級精度的進行不斷優化的運動搜索策略,首先取得兩個原始圖象幀的金子塔表示,從上到下解析度逐級變細,從頂端開始,選擇一個尺寸比較大的數據塊進行一個比較粗略的運動搜索過程,對在此基礎上進行亞抽樣(即通過降低數據塊尺寸(或提高抽樣解析度)和減少搜索范圍的辦法)進行到下一個較細的級來細化運動矢量,而一個新的搜索過程可以在上一級搜索到的最優運動矢量周圍進行。在亞抽樣的過程中也有著不同的抽樣方式和抽樣濾波器。這種方法的優點是運算量的下降比例比較大,而且搜索的比較全面。
缺點是由於亞抽樣或者濾波器的採用而使內存的需求增加,另外如果場景細節過多可能會容易落入局部最小點。 由於物體的運動千變萬化,很難用一種簡單的模型去描述,也很難用一種單一的演算法來搜索最佳運動矢量,因此實際上大多採用多種搜索演算法相組合的辦法,可以在很大程度上提高預測的有效性和魯棒性。
事實上,在運動估計時也並不是單一使用上述某一類搜索演算法,而是根據各類演算法的優點靈活組合採納。在運動幅度比較大的情況下可以採用自適應的菱形搜索法和六邊形搜索法,這樣可以大大節省碼率而圖象質量並未有所下降。在運動圖象非常復雜的情況下,採用全局搜索法在比特數相對來說增加不多的情況下使得圖象質量得到保證。 H.264 編碼標准草案推薦使用 1/4分數像素精度搜索。[6]中提到在整像素搜索時採用非對稱十字型多層次六邊形格點運動搜索演算法,然後採用鑽石搜索模型來進行分數像素精度運動估計。
解碼器要求傳送的比特數最小化,而復雜的模型需要更多的比特數來傳輸運動矢量,而且易受雜訊影響。因此,在提高視頻的編碼效率的技術中,運動補償精度的提高和比特數最小化是相互矛盾的,這就需要我們在運動估計的准確性和表示運動所用的比特數之間作出折中的選擇。它的效果與選用的運動模型是密切相關的。
『貳』 全文檢索演算法,請問誰能給我點頭緒落,不懂啊。。
全文檢索技術
全文檢索是指索引程序掃描文章中的每個詞並建立對應索引,記錄該詞出現的位置和次數。當通過搜索引擎查詢時,檢索程序就在記錄的索引進行查找並返回給用戶。全文檢索又分為基於字的全文索引和基於詞的全文索引。基於字的全文索引會對內容中的每個字建立索引並記錄,此方法查全率高,但查准率低,特別是對於中文,有時搜索馬克,會列出馬克思的結果。基於詞的全文索引是把一個詞語作為一個單位進行索引記錄,並能處理同義詞。搜索引擎有自己的詞庫,當用戶搜索時,搜索引擎會從詞庫中抽取關鍵詞作為索引項,這樣可以大大提高檢索的准確率。
中文分詞技術
一直以來大家都比較熟悉網路,網路有自己的中文分詞技術。一般採用的包括正向最大匹配,反向最大匹配,最佳匹配法,專家系統方法等。其中最大正向匹配是最常用的分詞解決方案,它採用機械式演算法,通過建立詞典並進行正向最大匹配對中文進行分詞。舉個簡單的例子比如搜索「北京大學在哪裡」,則返回結果很多都是包含北京大學,北大等詞語的網頁,搜索引擎就是採用正向最大匹配去判斷,把北京大學當做一個詞語來索引記錄並返回。當然,正向最大匹配也有不完整性,比如長度過長的詞語,搜索引擎有時無法准確的分詞,或者對前後都相互關聯的詞無法准確分詞。例如「結合成分子時」,會被返回結合、成分、子時,而有時我們想要的關鍵詞是「分子」。
很多時候網路都會根據自己詞庫中詞語的權重進行拆分,權重的計算基於生活各個方面,比較復雜,搜索引擎要做的就是返回用戶最想要的結果,有時站長們做網站要站在用戶的角度去考慮問題,其實這也是站在搜索引擎的角度考慮問題,不論在確定目標關鍵詞或者是長尾關鍵詞時,都可以根據中文分詞的原理來選擇,這樣可以最大化的減少無用功。
分詞原理不斷在變化,不斷在更新,我們應該繼續學習,只有掌握了本質才能抓住實質。
『叄』 搜索引擎演算法的常見的搜索引擎演算法
網路的石榴演算法,綠蘿演算法
谷歌的熊貓演算法,企鵝演算法
『肆』 搜索引擎演算法的定義
搜索引擎演算法:獲得網站網頁資料,建立資料庫並提供查詢的系統,我們都可以把它叫做搜索引擎。搜索引擎的資料庫是依靠一個叫「網路機器人(crawlers)」或叫「網路蜘蛛(Spider)」的軟體,通過網路上的各種鏈接自動獲取大量網頁信息內容,並按一定的規則分析整理形成的。Google、網路都是比較典型的搜索引擎系統。 為了更好的服務網路搜索,搜索引擎的分析整理規則---即搜索引擎演算法是變化的。搜索引擎演算法的變革將引領第四代搜索引擎的升級。
『伍』 百度搜索引擎的演算法是怎樣的
網路基礎演算法分析:鏈接流行度核心演算法+網路推廣+框計算+開放平台
1.【鏈接流行度】和大多數關鍵詞搜索引擎一樣,頁面URL地址鏈接的流行程度為核心的基礎核心演算法;
2.【網路推廣】起先叫做網路競價,後改為網路推廣,包括關鍵詞競價演算法和網盟推廣演算法兩部分;
3.【框計算】語義分析、行為分析、智能人機交互、海量基礎演算法等。
網路收錄流程
1.【頁面的收錄】搜索蜘蛛程序>收錄的頁面鏈接>現新的鏈接並爬行>的頁面及內容合格>錄快照並分類存儲>立頁面基本數據(頁面URL、頁面關鍵詞、頁面標題描述、收錄來源、收錄時間、內容簡述、頁面權重、更新周期);
2.【網路免費產品】網路、網路文庫、網路貼吧、網路知道、網路空間等網路自身免費產品的頁面收錄;
3.【網路開放平台】主要是站長提供的結構化數據(網站與網路的深度合作,如汽車網站的參數數據、網路知道介面等)和開發者提交的各種應用(開發者加入網路開發者中心並提交相關應用通過審核);
4.【網路競價推廣】網站主開通網路推廣賬戶>付費並通過網站審核>輯關鍵詞廣告及推廣計劃>交網路推廣後台;
5.【網路網盟推廣】網站主開通網路推廣賬戶>付費並通過網站審核>輯網盟廣告及推廣計劃>交網路推廣後台;網路聯盟廣告合作夥伴站長參與網盟推廣並審核通過》預留廣告位並做好網盟介面。
網路檢索流程
搜索需求>義分析>據庫檢索>名顯示反饋
1.【網路搜索頁面的檢索】用戶輸入關鍵詞並檢索>架算(語義分析及分詞判斷、行為分析、智能人機交互、海量基礎演算法)>計算結果(開放平台的數據、傳統搜索結果、網路推廣結果、網路自身產品結果)>計算結果排名。
2.【網路網盟頁面的推薦】用戶訪問網路網盟某合作網站頁面>盟演算法根據用戶瀏覽器大量有價值的搜索Cookis計算並推薦廣告>戶被有質量的廣告吸引並點擊>盟推廣後台引導用戶進入參與網盟推廣的網站相應頁面。
『陸』 用數據結構編寫一個斐波那契數據的檢索演算法程序(0 1 1 2 3 5)
什麼意思?
斐波那契數列嗎?
var n:integer
f:array[1..90]of longint;
function fb(i:integer):longint;
begin
if i=1 then exit(1);
if i=2 then exit(2);
if f[i]<>0 then exit(f[i]);
fb:=fb(i-1)+fb(i-2);
f[i]:=fb;
end;
begin
read(n);
writeln(fb(n));
end.
『柒』 搜索演算法中,A演算法A*演算法的區別(急)
A演算法一般指某個搜索演算法的樸素的思路
A*指使用了啟發式搜索之後的演算法,也就是運算速度會快很多,但不一定能保證最後得到最優解
『捌』 搜索引擎演算法都有哪些
這個的話一般來說都不是很清楚,
但如果是一些大體的演算法 如下: 谷歌PR值演算法:(1-d)+d/(pr(t)/pr(y)+……pr(tn)/pr(yn)+……)
D代表0.85 而pr(t)是指友情鏈接的對方網站的PR值 pr(y)是指友情鏈接的對方網站的導出友情鏈接的數量
『玖』 常見的搜索演算法有哪幾種
廣度優先搜索(BFS)
深度優先搜索(DFS)
爬山法(Hill Climbing)
最佳優先演算法(Best-first search strategy)
回溯法 (Backtracking)
分支限界演算法(Branch-and-bound Search Algorithm)
『拾』 幾種搜索引擎演算法研究
2.1Google和PageRank演算法
搜索引擎Google最初是斯坦福大學的博士研究生Sergey Brin和Lawrence Page實現的一個原型系統[2],現在已經發展成為WWW上最好的搜索引擎之一。Google的體系結構類似於傳統的搜索引擎,它與傳統的搜索引擎最大的不同處在於對網頁進行了基於權威值的排序處理,使最重要的網頁出現在結果的最前面。Google通過PageRank元演算法計算出網頁的PageRank值,從而決定網頁在結果集中的出現位置,PageRank值越高的網頁,在結果中出現的位置越前。
2.1.1PageRank演算法
PageRank演算法基於下面2個前提:
前提1:一個網頁被多次引用,則它可能是很重要的;一個網頁雖然沒有被多次引用,但是被重要的網頁引用,則它也可能是很重要的;一個網頁的重要性被平均的傳遞到它所引用的網頁。這種重要的網頁稱為權威(Authoritive)網頁。
前提2:假定用戶一開始隨機的訪問網頁集合中的一個網頁,以後跟隨網頁的向外鏈接向前瀏覽網頁,不回退瀏覽,瀏覽下一個網頁的概率就是被瀏覽網頁的PageRank值。