數值演算法
① 數值計算方法概述
在采礦工程中,數值模擬方法不僅能模擬岩體復雜的力學和結構特徵,還能很方便地解決現場監測過程中需要大量人力、物力而無法完成的、現有力學理論不能求解的復雜形體問題,並對礦山岩體穩定性進行預測與預報。
關於岩土工程的數值分析方法,很多學者都作過系統綜述[53,68,72],筆者只擬簡單介紹。岩土工程數值分析方法,主要分為三大類,如圖7-1所示。
圖7-1 邊坡工程數值分析方法
(1)連續介質數值分析方法
連續介質數值分析方法的理論基礎是彈(塑)性力學。因此,在該類數值分析方法公式的推導過程中,需要滿足基本方程和邊界條件。只是在求解手段上,採用了不同於彈性力學的各種近似解法。這類數值分析方法包括有限差分法、有限單元法和邊界單元法等,它適用於連續介質體的地下工程圍岩與結構的應力分析和位移求解。
(2)非連續介質數值分析方法
非連續介質數值分析方法的理論基礎是牛頓運動定律,它並不滿足結構的位移連續條件,但是可以求出結構在平衡狀態下的位移或者在不可能處於平衡狀態時的破壞模式。此外,盡管結構不受位移連續的約束,但應滿足給定的單元和交界面的本構定律。這類數值分析方法主要有離散單元法和不連續變形分析(DDA)。這些數值分析方法可用於分析節理岩體可能發生的不連續變形,如洞室圍岩附近岩塊的分離與滑落等。
(3)混合介質數值分析方法
混合介質數值分析方法是連續和不連續分析方法的耦合。在地下結構的某些區域(如洞室附近),圍岩體由於開挖影響而發生塊體的分離而不連續,在另外區域(如遠離洞室),則岩體一般仍相互聯系而處於連續狀態。因此,考慮兩種不同力學介質的耦合分析很必要。目前常見的耦合方法有有限元與離散元的耦合、邊界元與離散元的耦合等。混合介質吸取連續介質和非連續介質兩種數值分析方法中的優點,在可能發生不連續變形的岩體,採用非連續介質方法模擬,而遠離洞室的岩體一般仍處於連續狀態,可採用連續介質模型分析。
本章分別採用有限元強度折減法、有限元和離散元相結合的CDEM法、FLAC差分法,開展安家嶺露天礦露天井工聯合開採的數值模擬分析,研究露天開采和井工開採的相互作用及影響規律。
② 請詳細點數值計演算法法
有限元邊界元之類的演算法都是用來解帶有邊界條件的偏微分方程, 數值計算教材一般不會介紹這類特殊問題的演算法, 一般只介紹最基本常見的演算法有限元是有網格的演算法, 跟無網格的演算法明顯是不同的, 所謂「交叉」,既然是解同類的問題, 有交叉也有各自特點這是正常的
③ 數值計算方法
數字信號處理是把信號用數字或符號表示成序列,通過計算機或通用(專用)信號處理設備,用數值計算方法進行各種處理,達到提取有用信息便於應用的目的。例如:濾波、檢測、變換、增強、估計、識別、參數提取、頻譜分析等。
一般地講,數字信號處理涉及三個步驟:
⑴模數轉換(A/D轉換):把模擬信號變成數字信號,是一個對自變數和幅值同時進行離散化的過程,基本的理論保證是采樣定理。
⑵數字信號處理(DSP):包括變換域分析(如頻域變換)、數字濾波、識別、合成等。
⑶數模轉換(D/A轉換):把經過處理的數字信號還原為模擬信號。通常,這一步並不是必須的。 作為DSP的成功例子有很多,如醫用CT斷層成像掃描儀的發明。它是利用生物體的各個部位對X射線吸收率不同的現象,並利用各個方向掃描的投影數據再構造出檢測體剖面圖的儀器。這種儀器中fft(快速傅里葉變換)起到了快速計算的作用。以後相繼研製出的還有:採用正電子的CT機和基於核磁共振的CT機等儀器,它們為醫學領域作出了很大的貢獻。
信號處理的目的是:削弱信號中的多餘內容;濾出混雜的雜訊和干擾;或者將信號變換成容易處理、傳輸、分析與識別的形式,以便後續的其它處理。
④ 數值演算法與解析演算法的主要區別是
數值演算法用來解決近似值問題,要求很高的精確度。解析演算法,我理解的就是解析式了,就是未知數的式子表示需要解決的問題。
⑤ 數值計演算法
6.1.2.1 邊坡數值計算的安全系數確定
數值分析方法考慮岩土體應力應變關系,克服了極限平衡方法的缺點,為邊坡穩定分析提供了較深入的概念。
目前,數值計算的失穩判據主要有兩類:一是以數值計算不收斂作為失穩的標志;二是以廣義塑性應變或者等效塑性應變從坡腳到坡頂貫通作為邊坡破壞的標志。而用數值分析結果獲取邊坡安全系數也主要有兩種方法:強度折減法、數值計算與極限平衡的耦合分析法。
(1)強度折減法:首先選取初始折減系數,將岩土體強度參數進行折減,將折減後的參數輸入,進行數值計算,若程序收斂,則岩土體仍處於穩定狀態,然後需要再增加折減系數,直到程序恰好不收斂,此時的折減系數即為穩定或安全系數。[52]
(2)數值計算與極限平衡的耦合分析法:首先採用數值分析法,計算邊坡內的應力應變以及位移分布;然後將計算的應力分布結果,通過應力張量變換,求出指定滑動面上的應力分布;最後通過極限平衡方法求出與該滑動面對應的穩定性安全系數。[52]
6.1.2.2 邊坡數值計算方法存在的問題剖析
應該指出,盡管近年來數值模擬方法和理論方面取得了顯著的進展,但仍不能很好的適應岩土工程的復雜情況,其主要原因有兩方面:(1)數學模型的不確定性。由於岩體力學性質千變萬化(彈性、塑性、流變、應變硬化及應變軟化等),且具有復雜的結構特性(岩體結構、岩體介質結構及地質結構等),不但至今對岩體的失穩或破壞還缺少可靠的判據或准則,而且工程開挖方法、開挖步序對圍岩的力學狀態(應力和應變)及穩定條件具有重大的影響,在某些情況下還起到決定性的作用,這使得目前對於數學模型的建立,尤其是本構模型的給定還帶有相當程度的盲目性。(2)參數的不確定性。岩體的物理力學性質、初始地應力等參數多變,僅通過有限的現場調查和室內試驗來獲得參數輸入信息,數據往往具有很大的離散性,很難全面反映岩體真實情況。
「數學模型給不準」和「輸入參數給不準」的困難已成為岩體力學數值分析應用的「瓶頸」問題。事實上,無論數值分析技術多麼發達,它們總只是某種手段,關鍵還是對岩體基本特性的認識。
⑥ 數值計算方法
1. 數值計算的結果是離散的,並且一定有誤差,這是數值計算方法區別與解析法的主要特徵。 2. 注重計算的穩定性。控制誤差的增長勢頭,保證計算過程穩定是數值計算方法的核心任務之一。 3. 注重快捷的計算速度和高計算精度是數值計算的重要特徵。 4. 注重構造性證明。 5.數值計算主要是運用MATLAB這個數學軟體來解決實際的問題 6.數值計算主要是運用有限逼近的的思想來進行誤差運算數值積分