遺傳演算法是
Ⅰ 關於遺傳演算法
遺傳演算法(Genetic Algorithm,簡稱GA)是美國 Michigan大學的 John Golland提出的一種建立在自然選擇和群體遺傳學機理基礎上的隨機、迭代、進化、具有廣泛適用性的搜索方法。現在已被廣泛用於學習、優化、自適應等問題中。圖4-1 給出了 GA搜索過程的直觀描述。圖中曲線對應一個具有復雜搜索空間(多峰空間)的問題。縱坐標表示適應度函數(目標函數),其值越大相應的解越優。橫坐標表示搜索點。顯然,用解析方法求解該目標函數是困難的。採用 GA時,首先隨機挑選若干個搜索點,然後分別從這些搜索點開始並行搜索。在搜索過程中,僅靠適應度來反復指導和執行 GA 搜索。在經過若干代的進化後,搜索點後都具有較高的適應度並接近最優解。
一個簡單GA由復制、雜交和變異三個遺傳運算元組成:
圖4-2 常規遺傳演算法流程圖
Ⅱ 什麼是遺傳演算法
遺傳演算法是模擬自然界中按「優勝劣汰」法則進行進化過程而設計的演算法。Bagley和Rosengerg於1967年在他們的博士論文中首先提出了遺傳演算法的概念。1975年Holland出版的專著奠定了遺傳演算法的理論基礎。如今遺傳演算法不但給出了清晰的演算法描述,而且也建立了一些定量分析的結果,在眾多領域得到了廣泛的應用,如用於控制(煤氣管道的控制)、規劃(生產任務規劃)、設計(通信網路設計)、組合優化(TSP問題、背包問題)以及圖像處理和信號處理等。
Ⅲ 什麼叫遺傳演算法,遺傳演算法有什麼用希望通俗一點兒
首先有個很神奇的現象:人類以及動物的進化都是朝著好的方向發展,雖然有的往壞的方向發展了,但是總體肯定是往好的方向發展。這看似不奇怪,但是我們知道,人類的基因組合是隨機的,沒有上帝約束。這種隨機過程的結果卻是一致的!!!!!我們的遺傳演算法就是從這里得到啟發!比如我要求y=x1+x2的最大值,兩個變數,我不用傳統的數學方法,就用幼兒園的方法,把所有可能取值帶進去算,然後找出最大的就行了!但是,有時候取值是連續的,沒關系!使其離散化,就像把模擬信號化成數字信號一樣!還有個問題,如果取值太多咋辦?這就是遺傳演算法的精髓!
首先,我不用取所有可能取值,我只取幾十個或者幾百個(自己定),然後進行處理,怎樣處理呢?讓我們回到剛開始的人類進化問題,雖然沒有上帝的幫忙,但是我們知道,自然界遵循優勝劣汰的發賊,遵循交叉變異的法則,雖然不能數字化,但是這是個趨勢!我們就是把這種法則數學化!所取的幾十個值我要剩下哪些?要拋棄哪些?要處理哪些?這都要我們自己選擇,肯定是選擇最合適的取值留下,經過一系列的處理,就生成了新的群體,然後再處理,自己約定處理到第幾次就可以了,取出現過的最大值
不用擔心取到的是不是最大值,因為數學上已經有了證明,這種方法是收斂的,概率是1,所以盡管放心的做,具體的做法要參考相關書籍,不難的。
遺傳演算法的最大用處就是解決數學理論不能解決的問題!比如路徑規劃,調度問題……
Ⅳ 遺傳演算法偽代碼是什麼
以下是遺傳演算法的偽代碼。
BEGIN:
I = 0; //進化種群代數
Initialize P(I); //初始化種群
Fitness P(I); //「適者生存」遺傳選擇
While(not Terminate-Condition) //不滿足終止條件時,循環
{
I ++; //循環
GA-Operation P(I); //遺傳演算法運算or操作
Fitness P(I); //「適者生存」遺傳選擇
}。
Ⅳ 遺傳演算法概念
遺傳演算法是模擬達爾文的生物進化理論,結合進化中優勝劣汰的概念,是一種基於自然選擇和遺傳學原理的搜索演算法。
Ⅵ 遺傳演算法的一般演算法
遺傳演算法是基於生物學的,理解或編程都不太難。下面是遺傳演算法的一般演算法: 繁殖(包括子代突變)
帶有較高適應度值的那些染色體更可能產生後代(後代產生後也將發生突變)。後代是父母的產物,他們由來自父母的基因結合而成,這個過程被稱為「雜交」。 各個個體對環境的適應程度叫做適應度(fitness)。為了體現染色體的適應能力,引入了對問題中的每一個染色體都能進行度量的函數,叫適應度函數。 這個函數是計算個體在群體中被使用的概率。
Ⅶ 遺傳演算法
遺傳演算法是從代表問題可能潛在解集的一個種群開始的,而一個種群則由經過基因編碼的一定數目的個體組成。每個個體實際上是染色體帶有特徵的實體。染色體作為遺傳物質的主要載體,即多個基因的集合,其內部表現(即基因型)是某種基因的組合,它決定了個體形狀的外部表現,如黑頭發的特徵是由染色體中控制這一特徵的某種基因組合決定的。因此,在一開始需要實現從表現型到基因型的映射即編碼工作。由於仿照基因編碼的工作很復雜,我們往往進行簡化,如二進制編碼。初始種群產生之後,按照適者生存和優勝劣汰的原理,逐代(generation)演化產生出越來越好的近似解。在每一代,根據問題域中個體的適應度(fitness)大小挑選(selection)個體,並藉助於自然遺傳學的遺傳運算元(genetic operators)進行組合交叉(crossover)和變異(mutation),產生出代表新的解集的種群。這個過程將導致種群自然進化一樣的後生代種群比前代更加適應環境,末代種群中的最優個體經過編碼(decoding),可以作為問題近似最優解。
5.4.1 非線性優化與模型編碼
假定有一組未知參量
xi(i=1,2,…,M)
構成模型向量m,它的非線性目標函數為Φ(m)。根據先驗知識,對每個未知量都有上下界αi及bi,即αi≤x≤bi,同時可用間隔di把它離散化,使
di=(bi-αi)/N (5.4.1)
於是,所有允許的模型m將被限制在集
xi=αi+jdi(j=0,1,…,N) (5.4.2)
之內。
通常目標泛函(如經濟學中的成本函數)表示觀測函數與某種期望模型的失擬,因此非線性優化問題即為在上述限制的模型中求使Φ(m)極小的模型。對少數要求擬合最佳的問題,求目標函數的極大與失擬函數求極小是一致的。對於地球物理問題,通常要進行殺重離散化。首先,地球模型一般用連續函數表示,反演時要離散化為參數集才能用於計算。有時,也將未知函數展開成已知基函數的集,用其系數作為離散化的參數集xi,第二次離散化的需要是因為每一個未知參數在其變化范圍內再次被離散化,以使離散模型空間最終包含著有限個非線性優化可選擇的模型,其個數為
地球物理數據處理教程
其中M為未知參數xi的個數。由此式可見,K決定於每個參數離散化的間隔di及其變化范圍(αi,bi),在大多數情況下它們只能靠先驗知識來選擇。
一般而言,優化問題非線性化的程度越高,逐次線性化的方法越不穩定,而對蒙特卡洛法卻沒有影響,因為此法從有限模型空間中隨機地挑選新模型並計算其目標函數 Φ(m)。遺傳演算法與此不同的是同時計算一組模型(開始時是隨機地選擇的),然後把它進行二進制編碼,並通過繁殖、雜交和變異產生一組新模型進一步有限的模型空間搜索。編碼的方法可有多種,下面舉最簡單的例說明之,對於有符號的地球物理參數反演時的編碼方式一般要更復雜些。
假設地球為有三個水平層的層次模型,含層底界面深度hj(j=1,2,3)及層速度vj(j=1,2,3)這兩組參數。如某個模型的參數值為(十進制):
h1=6,h2=18,h3=28,單位為10m
v1=6,v2=18,v3=28,單位為 hm/s
按正常的二進制編碼法它們可分別用以下字元串表示為:
地球物理數據處理教程
為了減少位元組,這種編碼方式改變了慣用的單位制,只是按精度要求(深度為10m,波速為hm/s)來規定參數的碼值,同時也意味著模型空間離散化間距di都規格化為一個單位(即10m,或hm/s)。當然,在此編碼的基礎上,還可以寫出多種新的編碼字元串。例如,三參數值的對應位元組順序重排,就可組成以下新的二進制碼串:
地球物理數據處理教程
模型參數的二進制編碼是一種數學上的抽象,通過編碼把具體的非線性問題和生物演化過程聯系了起來,因為這時形成的編碼字元串就相當於一組遺傳基因的密碼。不僅是二進制編碼,十進制編碼也可直接用於遺傳演算法。根據生物系統傳代過程的規律,這些基因信息將在繁殖中傳到下一帶,而下一代將按照「適者生存」的原則決定種屬的發展和消亡,而優化准則或目標函數就起到了決定「適者生存」的作用,即保留失擬較小的新模型,而放棄失擬大的模型。在傳帶過程中用編碼表示的基因部分地交合和變異,即字元串中的一些子串被保留,有的改變,以使傳代的過程向優化的目標演化。總的來說,遺傳演算法可分為三步:繁殖、雜交和變異。其具體實現過程見圖5.8。
圖5.8 遺傳演算法實現過程
5.4.2 遺傳演算法在地震反演中的應用
以地震走時反演為例,根據最小二乘准則使合成記錄與實測數據的擬合差取極小,目標函數可取為
地球物理數據處理教程
式中:Ti,0為觀測資料中提取出的地震走時;Ti,s為合成地震或射線追蹤算出的地震走時;ΔT為所有合成地震走時的平均值;NA為合成地震數據的個數,它可以少於實測Ti,0的個數,因為在射線追蹤時有陰影區存在,不一定能算出合成數據Tj,0。利用射線追蹤計算走時的方法很多,參見上一章。對於少數幾個波速為常數的水平層,走時反演的參數編碼方法可參照上一節介紹的分別對深度和速度編碼方法,二進制碼的字元串位數1不會太大。要注意的是由深度定出的字元串符合數值由淺到深增大的規律,這一約束條件不應在雜交和傳代過程中破壞。這種不等式的約束(h1<h2<h3…)在遺傳演算法中是容易實現的。
對於波場反演,較方便的做法是將地球介質作等間距的劃分。例如,將水平層狀介質細分為100個等厚度的水平層。在上地殼可假定波速小於6400 m/s(相當於解空間的硬約束),而波速空間距為100m/s,則可將波速用100m/s為單位,每層用6位二進制字元串表示波速,地層模型總共用600位二進制字元串表示(l=600)。初始模型可隨機地選取24~192個,然後通過繁殖雜交與變異。雜交概率在0.5~1.0之間,變異概率小於0.01。目標函數(即失擬方程)在頻率域可表示為
地球物理數據處理教程
式中:P0(ωk,vj)為實測地震道的頻譜;ωk為角頻率;vj為第j層的波速;Ps(ωk,vj)為相應的合成地震道;A(ωk)為地震儀及檢波器的頻率濾波器,例如,可取
A(ω)=sinC4(ω/ωN) (5.4.6)
式中ωN為Nyquist頻率,即ωN=π/Δt,Δt為時間采樣率。參數C為振幅擬合因子,它起到合成與觀測記錄之間幅度上匹配的作用。C的計算常用地震道的包絡函數的平均比值。例如,設E[]為波動信號的包絡函數,可令
地球物理數據處理教程
式中:tmax為包絡極大值的對應時間;J為總層數。包絡函數可通過復數道的模擬取得。
用遺傳演算法作波速反演時失擬最小的模型將一直保存到迭代停止。什麼時候停止傳代還沒有理論上可計算的好辦法,一般要顯示解空間的搜索范圍及局部密度,以此來判斷是否可以停止傳代。值得指出的是,由(5.4.4)和(5.4.5)式給出的目標函數對於有誤差的數據是有問題的,反演的目標不是追求對有誤差數據的完美擬合,而是要求出准確而且解析度最高的解估計。
遺傳演算法在執行中可能出現兩類問題。其一稱為「早熟」問題,即在傳代之初就隨機地選中了比較好的模型,它在傳代中起主導作用,而使其後的計算因散不開而白白浪費。通常,增加Q值可以改善這種情況。另一類問題正相反,即傳相當多代後仍然找不到一個特別好的解估計,即可能有幾百個算出的目標函數值都大同小異。這時,最好修改目標函數的比例因子(即(5.4.5)式的分母),以使繁殖概率Ps的變化范圍加大。
對於高維地震模型的反演,由於參數太多,相應的模型字元串太長,目前用遺傳演算法作反演的計算成本還嫌太高。實際上,為了加快計算,不僅要改進反演技巧和傳代的控制技術,而且還要大幅度提高正演計算的速度,避免對遺傳演算法大量的計算花費在正演合成上。
Ⅷ 什麼是遺傳演算法
遺傳演算法(Genetic Algorithm)是模擬達爾文生物進化論的自然選擇和遺傳學機理的生物進化過程的計算模型,是一種通過模擬自然進化過程搜索最優解的方法。遺傳演算法是從代表問題可能潛在的解集的一個種群(population)開始的,而一個種群則由經過基因(gene)編碼的一定數目的個體(indivial)組成。每個個體實際上是染色體(chromosome)帶有特徵的實體。染色體作為遺傳物質的主要載體,即多個基因的集合,其內部表現(即基因型)是某種基因組合,它決定了個體的形狀的外部表現,如黑頭發的特徵是由染色體中控制這一特徵的某種基因組合決定的。因此,在一開始需要實現從表現型到基因型的映射即編碼工作。由於仿照基因編碼的工作很復雜,我們往往進行簡化,如二進制編碼,初代種群產生之後,按照適者生存和優勝劣汰的原理,逐代(generation)演化產生出越來越好的近似解,在每一代,根據問題域中個體的適應度(fitness)大小選擇(selection)個體,並藉助於自然遺傳學的遺傳運算元(genetic operators)進行組合交叉(crossover)和變異(mutation),產生出代表新的解集的種群。這個過程將導致種群像自然進化一樣的後生代種群比前代更加適應於環境,末代種群中的最優個體經過解碼(decoding),可以作為問題近似最優解。
Ⅸ 遺傳演算法是什麼
遺傳演算法(Genetic Algorithm)是一類借鑒生物界的進化規律(適者生存,優勝劣汰遺傳機制)演化而來的隨機化搜索方法。
遺傳演算法(Genetic Algorithms簡稱GA)是由美國Michigan大學的John Holland教授於20世紀60年代末創建的。它來源於達爾文的進化論和孟德爾、摩根的遺傳學理論,通過模擬生物進化的機制來構造人工系統。遺傳演算法作為一種全局優化方法,提供了一種求解復雜系統優化問題的通用框架,它不依賴於問題的具體領域,對優化函數的要求很低並且對不同種類的問題具有很強的魯棒性,所以廣泛應用於計算機科學、工程技術和社會科學等領域。John Holland教授通過模擬生物進化過程設計了最初的遺傳演算法,我們稱之為標准遺傳演算法。
標准遺傳演算法流程如下:
1)初始化遺傳演算法的群體,包括初始種群的產生以及對個體的編碼。
2)計算種群中每個個體的適應度,個體的適應度反映了其優劣程度。
3)通過選擇操作選出一些個體,這些個體就是母代個體,用來繁殖子代。
4)選出的母代個體兩兩配對,按照一定的交叉概率來進行交叉,產生子代個體。
5)按照一定的變異概率,對產生的子代個體進行變異操作。
6)將完成交叉、變異操作的子代個體,替代種群中某些個體,達到更新種群的目的。
7)再次計算種群的適應度,找出當前的最優個體。
8)判斷是否滿足終止條件,不滿足則返回第3)步繼續迭代,滿足則退出迭代過程,第7)步中得到的當前最優個體,通過解碼,就作為本次演算法的近似最優解。
具體你可以到網路文庫去搜索遺傳演算法相關的論文,很多的。
你也可以參考網路里對遺傳演算法的介紹。