分析演算法的時間復雜度
⑴ 如何分析演算法的復雜度
演算法的復雜性
演算法的復雜性是演算法效率度量,是評價演算法優劣的重要依據。一個演算法的復雜性的高低體現在運行該演算法所需要的計算機資源的多少上面,所需的資源越多,我們就說該演算法的復雜性越高;反之,所需的資源越低,則該演算法的復雜性越低。
計算機的資源,最重要的是時間和空間(即存儲器)資源。因而,演算法的復雜性有時間復雜性和空間復雜性之分。
不言而喻,對於任意給定的問題,設計出復雜性盡可能低的演算法是我們在設計演算法時追求的一個重要目標;另一方面,當給定的問題已有多種演算法時,選擇其中復雜性最低者,是我們在選用演算法適應遵循的一個重要准則。因此,演算法的復雜性分析對演算法的設計或選用有著重要的指導意義和實用價值。
簡言之,在演算法學習過程中,我們必須首先學會對演算法的分析,以確定或判斷演算法的優劣。
1.時間復雜性:
例1:設一程序段如下(為討論方便,每行前加一行號)
(1) for i:=1 to n do
(2) for j:=1 to n do
(3) x:=x+1
......
試問在程序運行中各步執行的次數各為多少?
解答:
行號 次數(頻度)
(1) n+1
(2) n*(n+1)
(3) n*n
可見,這段程序總的執行次數是:f(n)=2n2+2n+1。在這里,n可以表示問題的規模,當n趨向無窮大時,如果 f(n)的值很小,則演算法優。作為初學者,我們可以用f(n)的數量級O來粗略地判斷演算法的時間復雜性,如上例中的時間復雜性可粗略地表示為T(n)=O(n2)。
⑵ 如何計算時間復雜度
如何計算時間復雜度
定義:如果一個問題的規模是n,解這一問題的某一演算法所需要的時間為T(n),它是n的某一函數 T(n)稱為這一演算法的「時間復雜性」。
當輸入量n逐漸加大時,時間復雜性的極限情形稱為演算法的「漸近時間復雜性」。
我們常用大O表示法表示時間復雜性,注意它是某一個演算法的時間復雜性。大O表示只是說有上界,由定義如果f(n)=O(n),那顯然成立f(n)=O(n^2),它給你一個上界,但並不是上確界,但人們在表示的時候一般都習慣表示前者。
此外,一個問題本身也有它的復雜性,如果某個演算法的復雜性到達了這個問題復雜性的下界,那就稱這樣的演算法是最佳演算法。
「大 O記法」:在這種描述中使用的基本參數是 n,即問題實例的規模,把復雜性或運行時間表達為n的函數。這里的「O」表示量級 (order),比如說「二分檢索是 O(logn)的」,也就是說它需要「通過logn量級的步驟去檢索一個規模為n的數組」記法 O ( f(n) )表示當 n增大時,運行時間至多將以正比於 f(n)的速度增長。
這種漸進估計對演算法的理論分析和大致比較是非常有價值的,但在實踐中細節也可能造成差異。例如,一個低附加代價的O(n2)演算法在n較小的情況下可能比一個高附加代價的 O(nlogn)演算法運行得更快。當然,隨著n足夠大以後,具有較慢上升函數的演算法必然工作得更快。
O(1)
Temp=i;i=j;j=temp;
以 上三條單個語句的頻度均為1,該程序段的執行時間是一個與問題規模n無關的常數。演算法的時間復雜度為常數階,記作T(n)=O(1)。如果演算法的執行時 間不隨著問題規模n的增加而增長,即使演算法中有上千條語句,其執行時間也不過是一個較大的常數。此類演算法的時間復雜度是O(1)。
O(n^2)
2.1. 交換i和j的內容
sum=0; (一次)
for(i=1;i<=n;i++) (n次 )
for(j=1;j<=n;j++) (n^2次 )
sum++; (n^2次 )
解:T(n)=2n^2+n+1 =O(n^2)
2.2.
for (i=1;i<n;i++)
{
y=y+1; ①
for (j=0;j<=(2*n);j++)
x++; ②
}
解: 語句1的頻度是n-1
語句2的頻度是(n-1)*(2n+1)=2n^2-n-1
f(n)=2n^2-n-1+(n-1)=2n^2-2
該程序的時間復雜度T(n)=O(n^2).
O(n)
2.3.
a=0;
b=1; ①
for (i=1;i<=n;i++) ②
{
s=a+b;③
b=a;④
a=s;⑤
}
解: 語句1的頻度:2,
語句2的頻度: n,
語句3的頻度: n-1,
語句4的頻度:n-1,
語句5的頻度:n-1,
T(n)=2+n+3(n-1)=4n-1=O(n).
O(log2n )
2.4.
i=1; ①
while (i<=n)
i=i*2; ②
解: 語句1的頻度是1,
設語句2的頻度是f(n), 則:2^f(n)<=n;f(n)<=log2n
取最大值f(n)= log2n,
T(n)=O(log2n )
O(n^3)
2.5.
for(i=0;i<n;i++)
{
for(j=0;j<i;j++)
{
for(k=0;k<j;k++)
x=x+2;
}
}
解: 當i=m, j=k的時候,內層循環的次數為k當i=m時, j 可以取 0,1,...,m-1 , 所以這里最內循環共進行了0+1+...+m-1=(m-1)m/2次所以,i從0取到n, 則循環共進行了: 0+(1-1)*1/2+...+(n-1)n/2=n(n+1)(n-1)/6所以時間復雜度為O(n^3).
我 們還應該區分演算法的最壞情況的行為和期望行為。如快速排序的最 壞情況運行時間是 O(n^2),但期望時間是 O(nlogn)。通過每次都仔細 地選擇基準值,我們有可能把平方情況 (即O(n^2)情況)的概率減小到幾乎等於 0。在實際中,精心實現的快速排序一般都能以 (O(nlogn)時間運行。
下面是一些常用的記法:
訪問數組中的元素是常數時間操作,或說O(1)操作。一個演算法 如 果能在每個步驟去掉一半數據元素,如二分檢索,通常它就取 O(logn)時間。用strcmp比較兩個具有n個字元的串需要O(n)時間 。常規的矩陣乘演算法是O(n^3),因為算出每個元素都需要將n對 元素相乘並加到一起,所有元素的個數是n^2。
指數時間演算法通常來源於需要 求出所有可能結果。例如,n個元 素的集合共有2n個子集,所以要求出所有子集的演算法將是O(2n)的 。指數演算法一般說來是太復雜了,除非n的值非常小,因為,在 這個問題中增加一個元素就導致運行時間加倍。不幸的是,確實有許多問題 (如著名 的「巡迴售貨員問題」 ),到目前為止找到的演算法都是指數的。如果我們真的遇到這種情況, 通常應該用尋找近似最佳結果的演算法替代之。
⑶ 如何計算一個演算法的時間復雜度
求解演算法的時間復雜度的具體步驟是:
1、找出演算法中的基本語句:
演算法中執行次數最多的那條語句就是基本語句,通常是最內層循環的循環體。
2、計算基本語句的執行次數的數量級:
(1)只需計算基本語句執行次數的數量級,這就意味著只要保證基本語句執行次數的函數中的最高次冪正確即可,可以忽略所有低次冪和最高次冪的系數。
(2)這樣能夠簡化演算法分析,並且使注意力集中在最重要的一點上:增長率。
3、用大Ο記號表示演算法的時間性能:
(1)將基本語句執行次數的數量級放入大Ο記號中。
(2)如果演算法中包含嵌套的循環,則基本語句通常是最內層的循環體,如果演算法中包含並列的循環,則將並列循環的時間復雜度相加。例如:
for(i=1;i<=n;i++)x++;for(i=1;i<=n;i++)
for(j=1;j<=n;j++)x++;
(3)第一個for循環的時間復雜度為Ο(n),第二個for循環的時間復雜度為Ο(n2),則整個演算法的時間復雜度為Ο(n+n2)=Ο(n2)。
⑷ 演算法的時間復雜度是指什麼
就是對演算法執行時所花時間的度量。一般為問題規模的函數。
計算機科學中,演算法的時間復雜度是一個函數,它定量描述了該演算法的運行時間。這是一個關於代表演算法輸入值的字元串的長度的函數。時間復雜度常用大O符號表述,不包括這個函數的低階項和首項系數。使用這種方式時,時間復雜度可被稱為是漸近的,它考察當輸入值大小趨近無窮時的情況。
演算法復雜度分為時間復雜度和空間復雜度。其作用: 時間復雜度是指執行演算法所需要的計算工作量;而空間復雜度是指執行這個演算法所需要的內存空間。演算法的復雜性體現在運行該演算法時的計算機所需資源的多少上,計算機資源最重要的是時間和空間資源,因此復雜度分為時間和空間復雜度。
相關內容解釋:
函數在數學上的定義:給定一個非空的數集A,對A施加對應法則f,記作f(A),得到另一數集B,也就是B=f(A)。那麼這個關系式就叫函數關系式,簡稱函數。
簡單來講,對於兩個變數x和y,如果每給定x的一個值,y都有唯一一個確定的值與其對應,那麼我們就說y是x的函數。其中,x叫做自變數,y叫做因變數。
⑸ 演算法的時間復雜度取決於什麼
演算法的時間復雜度取決於問題的規模,待處理數據的初態。
一個語句的頻度是指該語句在演算法中被重復執行的次數。演算法中所有語句的頻度之和記為T(n),它是該演算法問題規模n的函數,時間復雜度主要分析T(n)的數量級。演算法中基本運算(最深層循環內的語句)的頻度與Tn)同數量級,因此通常採用演算法中基本運算的頻度fn)來分析演算法的時間復雜度3。
演算法的時間復雜度記為:T(n)= O(fn))式中,О 的含義是T(n)的數量級,其嚴格的數學定義是:若T(n)和fn)是定義在正整數集合上的兩個函數,則存在正常數C和n,使得當n≥no時,都滿足0≤T(n)≤Cfn)。
演算法的時間復雜度不僅依賴於問題的規模n,也取決於待輸入數據的性質(如輸入數據元素的初始狀態)。
⑹ 演算法的時間復雜度是什麼
執行一個演算法所耗費的時間,從理論上是不能算出來的,必須上機運行測試才能知道。但不可能也沒有必要對每個演算法都上機測試,只需知道哪個演算法花費的時間多,哪個演算法花費的時間少就可以了。一個演算法花費的時間與演算法中語句的執行次數成正比例,演算法中哪個語句的執行次數多,它花費的時間就多。
1.語句頻度在演算法中一個語句的執行次數稱為語句頻度或時間頻度,記為T(n)。
2)演算法的漸進時間復雜度一般情況下,演算法的執行時間T是問題規模n的函數,記作T(n)。要精確地表示演算法的運行時間函數常常是很困難的,即使能夠給出,也可能是個相當復雜的函數,函數的求解本身也是相當復雜的。為了客觀地反映一個演算法的執行時間,可以用演算法中基本語句的執行次數的數量級來度量演算法的工作量,稱作演算法的漸進時間復雜度,簡稱時間復雜度,通常用O來表示。
⑺ 演算法的時間復雜度取決於什麼
演算法的時間復雜度取決於問題的規模,待處理數據的初態。
一個語句的頻度是指該語句在演算法中被重復執行的次數。演算法中所有語句的頻度之和記為T(n),它是該演算法問題規模n的函數,時間復雜度主要分析T(n)的數量級。演算法中基本運算(最深層循環內的語句)的頻度與Tn)同數量級,因此通常採用演算法中基本運算的頻度fn)來分析演算法的時間復雜度3。
演算法的時間復雜度記為:T(n)= O(fn))式中,О 的含義是T(n)的數量級,其嚴格的數學定義是:若T(n)和fn)是定義在正整數集合上的兩個函數,則存在正常數C和n,使得當n≥no時,都滿足0≤T(n)≤Cfn)。
演算法的時間復雜度不僅依賴於問題的規模n,也取決於待輸入數據的性質(如輸入數據元素的初始狀態)。
⑻ 如何計算一個演算法的時間復雜度
求解演算法的時間復雜度的具體步驟是:
1、找出演算法中的基本語句:
演算法中執行次數最多的那條語句就是基本語句,通常是最內層循環的循環體。
2、計算基本語句的執行次數的數量級:
(1)只需計算基本語句執行次數的數量級,這就意味著只要保證基本語句執行次數的函數中的最高次冪正確即可,可以忽略所有低次冪和最高次冪的系數。
(2)這樣能夠簡化演算法分析,並且使注意力集中在最重要的一點上:增長率。
3、用大Ο記號表示演算法的時間性能:
(1)將基本語句執行次數的數量級放入大Ο記號中。
(2)如果演算法中包含嵌套的循環,則基本語句通常是最內層的循環體,如果演算法中包含並列的循環,則將並列循環的時間復雜度相加。例如:
for(i=1;i<=n;i++)x++;for(i=1;i<=n;i++)
for(j=1;j<=n;j++)x++;
(3)第一個for循環的時間復雜度為Ο(n),第二個for循環的時間復雜度為Ο(n2),則整個演算法的時間復雜度為Ο(n+n2)=Ο(n2)。
⑼ 演算法的時間復雜度定義
在進行演算法分析時,語句總的執行次數T(n)是關於問題規模n的函數,進而分析T(n)隨n的變化情況並確定T(n)的數量級。演算法的時間復雜度,也就是演算法的時間量度。記作:T(n)=O(f(n))。它表示隨問題n的增大,演算法執行時間的增長率和f(n)的增長率相同,稱作演算法的漸進時間復雜度,簡稱為時間復雜度。其中,f(n)是問題規模n的某個函數。
這樣用大寫O()來體現演算法時間復雜度的記法,我們稱之為大0記法。
⑽ 演算法時間復雜度指的是什麼
時間復雜性,又稱時間復雜度,演算法的時間復雜度是一個函數,它定性描述該演算法的運行時間。這是一個代表演算法輸入值的字元串的長度的函數。時間復雜度常用大O符號表述,不包括這個函數的低階項和首項系數。使用這種方式時,時間復雜度可被稱為是漸進的,亦即考察輸入值大小趨近無窮時的情況。
空間復雜性介紹
空間復雜性是指計算所需的存儲單元數量。隸屬於計算復雜性(計算復雜性由空間復雜性和時間復雜性兩部分組成)。演算法的復雜性是演算法運行所需要的計算機資源的量,需要時間資源量稱為時間復雜性,需要空間資源的量成為空間復雜性。
一個演算法的空間復雜度S(n)定義為該演算法所耗費的存儲空間,它也是問題規模n的函數。漸近空間復雜度也常常簡稱為空間復雜度。演算法的時間復雜度和空間復雜度合稱為演算法的復雜度。