當前位置:首頁 » 操作系統 » a星演算法

a星演算法

發布時間: 2022-01-14 20:43:54

❶ 游戲中為什麼用啟發式a星演算法

首先,A* 是啟發式演算法,在尋路過程中搜索的范圍相比 Dijsktra 一般要小得多(當然,有時也可能一樣)
其次,A* 演算法的搜索速度和效率可控,可以通過控制代價函數來權衡搜索的速度和精度之間的關系

❷ 深度優先搜索和廣度優先搜索,A星演算法三種演算法的區別和聯系

在說它之前先提提狀態空間搜索.狀態空間搜索,如果按專業點的說法就是將問題求解過程表現為從初始狀態到目標狀態尋找這個路徑的過程.通俗點說,就是 在解一個問題時,找到一條解題的過程可以從求解的開始到問題的結果(好象並不通俗哦).由於求解問題的過程中分枝有很多,定性,不完備性造成的,使得求解的路徑很多這就構成了一個圖,我們說這個圖就是狀態空間.問題的求解實際上就是在這個圖中找到一條路徑可以從開始到結果.這個尋找的過程就是狀態空間搜索.

❸ 如果人物地圖都是按格子來的,那麼可以用A星演算法自動尋路,如果路徑跟地圖都不是格子的,怎麼自動尋路,手

這個不行,尋路可能要遍歷到整個地圖,所以定幾個特殊點沒法得出路徑的。

❹ A星尋路演算法和Unity自帶的尋路相比有什麼優勢

並沒一種尋路適合所有場合,選擇都是基於需求而定的。

1. A* 演算法與貪婪演算法不一樣,貪婪演算法適合動態規劃,尋找局部最優解,不保證最優解。
A*是靜態網格中求解最短路最有效的方法。也是耗時的演算法,不宜尋路頻繁的場合。一般來說適合需求精確的場合。
與啟發式的搜索一樣,能夠根據改變網格密度、網格耗散來進行調整精確度。
使用的地方:
a. 策略游戲的策略搜索
b. 方塊格子游戲中的格子尋路

2. Unity 自帶的導航網格系統
Unity 內置了NavMesh導航網格系統,一般來說導航網格演算法大多是「拐角點演算法」。
效率是比較高的,但是不保證最優解演算法。
使用的地方:
a.游戲場景的怪物尋路
b.動態規避障礙

❺ JAVA的A星演算法問題

class AllShunXu { static String str = "12345"; static char[] a = str.toCharArray(); static int n = 5; static void swap(int arg1, int arg2){ char temp; temp = a[arg1]; a[arg1] = a[arg2]; a[arg2] = temp; } static void sort(int index){ int i; if (index == n){ for (i = 0; i < n; i++){ System.out.print(a[i]); } System.out.println(""); return; } for (i = index; i < n; i++){ swap(index,i); sort(index + 1); swap(index,i); } } public static void main(String args[]){ for(int s =0;s<n;s++){ sort(s); } }}

❻ lua語言a星尋路演算法路徑怎麼平滑

在項目中遇到了自動尋路的需求,於是決定開始學習一下A星,對於A星我也沒有深究,只能說是勉強搞定了需求,在這和大家分享一下,相互進步,

A星有個公式 f(x) = g(x) + h(x)
,搞清楚這個公式就好辦了,f(x)就是當前位置到下一個位置的總價值,g(x)表示實際價,這是說這一部分代價是確定的,h(x)表示估價值,就是說我
從下一個位置到到終點的代價是未知的,所以叫估價值,如圖中所示,黑色格子表示當前位置,綠色格子表示下一步可能到達的位置,即上、下、左、右這幾個方
向,紅色格子表示終點,褐色表示障礙物,現在要從黑色格子到達紅色格子,那麼黑色格子的下一步肯定是綠色格子當中的一個,黑色格子到綠色格子之間是相挨著
的,所以我們可以很明確的知道它的實際代價為1(移動一步的代價)即g(x),綠色格子到紅色格子之間隔著很長的距離,中間還有障礙物,所以這個代價是未
知的,即h(x),所以總的代價就為f(x) = g(x) +
h(x),我們看到周圍有4個綠色的格子,到底走那一步比較好呢,所以我們要把這4個格子的f(x)值都求出來,然後進行排序,選擇f(x)值最小的,即
總代價最少的那個格子,以此方法繼續下去,直到到達終點 或者 地圖上沒有綠色格子了

下面來看一下這個工具類,g(x)和h(x)要選的比較合適,一般就是採用的曼哈頓演算法,即兩點在x方向和y方向的距離之和,
-- Filename: PathUtil.lua
-- Author: bzx
-- Date: 2014-07-01
-- Purpose: 尋路

mole("PathUtil", package.seeall)

local _map_data -- 地圖數據
local _open_list -- 開放節點
local _open_map -- 開放節點,為了提高性能而加
local _close_map -- 關閉節點
local _deleget -- 代理
local _dest_point -- 目標點
local _start_point -- 起點
local _path -- 路徑

-- 尋找路徑
--[[
deleget = {
g = function(point1, point2)
-- add your code
-- 返回點point1到點point2的實際代價
end
h = function(point1, point2)
-- add your code
-- 返回點point1到點point2的估算代價
end
getValue = function(j, i)
-- 返回地圖中第i行,第j列的數據 1為障礙物,0為非障礙物
end
width -- 地圖寬度
height -- 地圖高度
}
--]]
function findPath(deleget, start_point, dest_point)
_deleget = deleget
_dest_point = dest_point
_start_point = start_point
init()
while not table.isEmpty(_open_list) do
local cur_point = _open_list[1]
table.remove(_open_list, 1)
_open_map[cur_point.key] = nil
if isEqual(cur_point, dest_point) then
return makePath(cur_point)
else
_close_map[cur_point.key] = cur_point
local next_points = getNextPoints(cur_point)
for i = 1, #next_points do
local next_point = next_points[i]
if _open_map[next_point.key] == nil and _close_map[next_point.key] == nil and isObstacle(next_point) == false then
_open_map[next_point.key] = next_point
table.insert(_open_list, next_point)
end
end
table.sort(_open_list, compareF)
end
end
return nil
end

function init()
_open_list = {}
_open_map = {}
_close_map = {}
_path = {}
_map_data = {}
for i = 1, _deleget.height do
_map_data[i] = {}
for j = 1, _deleget.width do
local value = _deleget.getValue(j, i)
_map_data[i][j] = value
end
end
_open_map[getKey(_start_point)] = _start_point
table.insert(_open_list, _start_point)
end

function createPoint(x, y)
local point = {
["x"] = x,
["y"] = y,
["last"] = nil,
["g_value"] = 0,
["h_value"] = 0,
["f_value"] = 0
}
point["key"] = getKey(point)
return point
end

-- 得到下一個可以移動的點
-- @param point 當前所在點
function getNextPoints(point)
local next_points = {}
for i = 1, #_deleget.directions do
local offset = _deleget.directions[i]
local next_point = createPoint(point.x + offset[1], point.y + offset[2])
next_point["last"] = point
if next_point.x >= 1 and next_point.x <= _deleget.width and next_point.y >= 1 and next_point.y <= _deleget.height then
next_point["g_value"] = _deleget.g(point, next_point)
next_point["h_value"] = _deleget.h(point, _dest_point)--math.abs(next_points.x - _dest_point.x) + math.abs(next_points.y - _dest_point.y)
next_point["f_value"] = next_point.g_value + next_point.h_value
table.insert(next_points, next_point)
end
end
return next_points
end

-- 得到路徑
-- @param end_point 目標點
function makePath(end_point)
_path = {}
local point = end_point
while point.last ~= nil do
table.insert(_path, createPoint(point.x, point.y))
point = point.last
end
local start_point = point
table.insert(_path, start_point)
return _path
end

-- 兩個點的代價比較器
function compareF(point1, point2)
return point1.f_value < point2.f_value
end

-- 是否是障礙物
function isObstacle(point)
local value = _map_data[point.y][point.x]
if value == 1 then
return true
end
return false
end

-- 兩個點是否是同一個點
function isEqual(point1, point2)
return point1.key == point2.key
end

-- 根據點得到點的key
function getKey(point)
local key = string.format("%d,%d", point.x, point.y)
return key
end

下面是工具類PathUtil的用法
local deleget = {}
deleget.g = function(point1, point2)
return math.abs(point1.x - point2.x) + math.abs(point1.y - point2.y)
end
deleget.h = deleget.g
deleget.getValue = function(j, i)
local index = FindTreasureUtil.getIndex(j, i)
local map_info = _map_info.map[index]
if map_info.display == 0 and map_info.eid ~= 1 then
return 0
end
return 1
end
deleget.directions = {{-1, 0}, {0, -1}, {0, 1}, {1, 0}} -- 左,上,下,右
deleget.width = _cols
deleget.height = _rows

local dest_row, dest_col = FindTreasureUtil.getMapPosition(tag)
local dest_point = PathUtil.createPoint(dest_col, dest_row)
local start_row, start_col = FindTreasureUtil.getMapPosition(_player_index)
local start_point = PathUtil.createPoint(start_col, start_row)
_path = PathUtil.findPath(deleget, start_point, dest_point)

_path就是我們找到的路徑,起點為最後一個元素,終點為第一個元素

❼ a星演算法 是不是深度學習演算法套路

不是的,a星演算法是一個啟發式搜索演算法

❽ 按鍵精靈a星演算法尋路怎麼製作地圖

你可以查找有關a星演算法走路,一步步去學,別人也不知道你說的是什麼地圖,怎麼判斷

❾ 深度優先搜索和廣度優先搜索、A星演算法三種演算法的區別和聯系

在說它之前先提提狀態空間搜索。狀態空間搜索,如果按專業點的說法就是將問題求解過程表現為從初始狀態到目標狀態尋找這個路徑的過程。通俗點說,就是 在解一個問題時,找到一條解題的過程可以從求解的開始到問題的結果(好象並不通俗哦)。由於求解問題的過程中分枝有很多,主要是求解過程中求解條件的不確 定性,不完備性造成的,使得求解的路徑很多這就構成了一個圖,我們說這個圖就是狀態空間。問題的求解實際上就是在這個圖中找到一條路徑可以從開始到結果。 這個尋找的過程就是狀態空間搜索。 常用的狀態空間搜索有深度優先和廣度優先。廣度優先是從初始狀態一層一層向下找,直到找到目標為止。深度優先是按照一定的順序前查找完一個分支,再查找另一個分支,以至找到目標為止。這兩種演算法在數據結構書中都有描述,可以參看這些書得到更詳細的解釋。 前面說的廣度和深度優先搜索有一個很大的缺陷就是他們都是在一個給定的狀態空間中窮舉。這在狀態空間不大的情況下是很合適的演算法,可是當狀態空間十分大,且不預測的情況下就不可取了。他的效率實在太低,甚至不可完成。在這里就要用到啟發式搜索了。 啟發中的估價是用估價函數表示的,如: f(n) = g(n) + h(n) 其中f(n) 是節點n的估價函數,g(n)實在狀態空間中從初始節點到n節點的實際代價,h(n)是從n到目標節點最佳路徑的估計代價。在這里主要是h(n)體現了搜 索的啟發信息,因為g(n)是已知的。如果說詳細點,g(n)代表了搜索的廣度的優先趨勢。但是當h(n) >> g(n)時,可以省略g(n),而提高效率。這些就深了,不懂也不影響啦!我們繼續看看何謂A*演算法。 2、初識A*演算法 啟發式搜索其實有很多的演算法,比如:局部擇優搜索法、最好優先搜索法等等。當然A*也是。這些演算法都使用了啟發函數,但在具體的選取最佳搜索節點時的 策略不同。象局部擇優搜索法,就是在搜索的過程中選取「最佳節點」後舍棄其他的兄弟節點,父親節點,而一直得搜索下去。這種搜索的結果很明顯,由於舍棄了 其他的節點,可能也把最好的節點都舍棄了,因為求解的最佳節點只是在該階段的最佳並不一定是全局的最佳。最好優先就聰明多了,他在搜索時,便沒有舍棄節點 (除非該節點是死節點),在每一步的估價中都把當前的節點和以前的節點的估價值比較得到一個「最佳的節點」。這樣可以有效的防止「最佳節點」的丟失。那麼 A*演算法又是一種什麼樣的演算法呢?其實A*演算法也是一種最好優先的演算法。只不過要加上一些約束條件罷了。由於在一些問題求解時,我們希望能夠求解出狀態空 間搜索的最短路徑,也就是用最快的方法求解問題,A*就是干這種事情的!我們先下個定義,如果一個估價函數可以找出最短的路徑,我們稱之為可採納性。A* 演算法是一個可採納的最好優先演算法。A*演算法的估價函數可表示為: f'(n) = g'(n) + h'(n) 這里,f'(n)是估價函數,g'(n)是起點到終點的最短路徑值,h'(n)是n到目標的最斷路經的啟發值。由於這個f'(n)其實是無法預先知道 的,所以我們用前面的估價函數f(n)做近似。g(n)代替g'(n),但 g(n)>=g'(n)才可(大多數情況下都是滿足的,可以不用考慮),h(n)代替h'(n),但h(n)<=h'(n)才可(這一點特別 的重要)。可以證明應用這樣的估價函數是可以找到最短路徑的,也就是可採納的。我們說應用這種估價函數的最好優先演算法就是A*演算法。哈。你懂了嗎?肯定沒 懂。接著看。 舉一個例子,其實廣度優先演算法就是A*演算法的特例。其中g(n)是節點所在的層數,h(n)=0,這種h(n)肯定小於h'(n),所以由前述可知廣度優先演算法是一種可採納的。實際也是。當然它是一種最臭的A*演算法。 再說一個問題,就是有關h(n)啟發函數的信息性。h(n)的信息性通俗點說其實就是在估計一個節點的值時的約束條件,如果信息越多或約束條件越多則排除 的節點就越多,估價函數越好或說這個演算法越好。這就是為什麼廣度優先演算法的那麼臭的原因了,誰叫它的h(n)=0,一點啟發信息都沒有。但在游戲開發中由 於實時性的問題,h(n)的信息越多,它的計算量就越大,耗費的時間就越多。就應該適當的減小h(n)的信息,即減小約束條件。但演算法的准確性就差了,這 里就有一個平衡的問題。可難了,這就看你的了! 好了我的話也說得差不多了,我想你肯定是一頭的霧水了,其實這是寫給懂A*演算法的同志看的。哈哈。你還是找一本人工智慧的書仔細看看吧!我這幾百字是不足以將A*演算法講清楚的。只是起到拋磚引玉的作用希望大家熱情參與嗎。

熱點內容
直流屏密碼是多少 發布:2024-12-25 00:28:26 瀏覽:655
汽車配置怎麼看馬力 發布:2024-12-25 00:23:49 瀏覽:83
ipad訪問許可權 發布:2024-12-25 00:23:01 瀏覽:690
rxjava上傳 發布:2024-12-25 00:22:59 瀏覽:306
如何用安卓機注銷一個蘋果id 發布:2024-12-25 00:22:57 瀏覽:993
python統計字元個數 發布:2024-12-25 00:22:12 瀏覽:541
我的世界伺服器鞘翅怎麼合成 發布:2024-12-25 00:21:22 瀏覽:799
網頁版360雲伺服器地址 發布:2024-12-25 00:15:59 瀏覽:383
傳奇手游腳本吧 發布:2024-12-25 00:14:00 瀏覽:169
伺服器voc是什麼 發布:2024-12-25 00:12:21 瀏覽:995