當前位置:首頁 » 操作系統 » 查找演算法公式

查找演算法公式

發布時間: 2022-08-16 10:56:23

A. 搜索引擎的排序演算法都有哪些是怎麼實現的

2.1基於詞頻統計——詞位置加權的搜索引擎
利用關鍵詞在文檔中出現的頻率和位置排序是搜索引擎最早期排序的主要思想,其技術發展也最為成熟,是第一階段搜索引擎的主要排序技術,應用非常廣泛,至今仍是許多搜索引擎的核心排序技術。其基本原理是:關鍵詞在文檔中詞頻越高,出現的位置越重要,則被認為和檢索詞的相關性越好。
1)詞頻統計
文檔的詞頻是指查詢關鍵詞在文檔中出現的頻率。查詢關鍵詞詞頻在文檔中出現的頻率越高,其相關度越大。但當關鍵詞為常用詞時,使其對相關性判斷的意義非常小。TF/IDF很好的解決了這個問題。TF/IDF演算法被認為是信息檢索中最重要的發明。TF(Term Frequency):單文本詞彙頻率,用關鍵詞的次數除以網頁的總字數,其商稱為「關鍵詞的頻率」。IDF(Inverse Document Frequency):逆文本頻率指數,其原理是,一個關鍵詞在N個網頁中出現過,那麼N越大,此關鍵詞的權重越小,反之亦然。當關鍵詞為常用詞時,其權重極小,從而解決詞頻統計的缺陷。
2)詞位置加權
在搜索引擎中,主要針對網頁進行詞位置加權。所以,頁面版式信息的分析至關重要。通過對檢索關鍵詞在Web頁面中不同位置和版式,給予不同的權值,從而根據權值來確定所搜索結果與檢索關鍵詞相關程度。可以考慮的版式信息有:是否是標題,是否為關鍵詞,是否是正文,字體大小,是否加粗等等。同時,錨文本的信息也是非常重要的,它一般能精確的描述所指向的頁面的內容。
2.2基於鏈接分析排序的第二代搜索引擎
鏈接分析排序的思想起源於文獻引文索引機制,即論文被引用的次數越多或被越權威的論文引用,其論文就越有價值。鏈接分析排序的思路與其相似,網頁被別的網頁引用的次數越多或被越權威的網頁引用,其價值就越大。被別的網頁引用的次數越多,說明該網頁越受歡迎,被越權威的網頁引用,說明該網頁質量越高。鏈接分析排序演算法大體可以分為以下幾類:基於隨機漫遊模型的,比如PageRank和Repution演算法;基於概率模型的,如SALSA、PHITS;基於Hub和Authority相互加強模型的,如HITS及其變種;基於貝葉斯模型的,如貝葉斯演算法及其簡化版本。所有的演算法在實際應用中都結合傳統的內容分析技術進行了優化。本文主要介紹以下幾種經典排序演算法:
1)PageRank演算法
PageRank演算法由斯坦福大學博士研究生Sergey Brin和Lwraence Page等提出的。PageRank演算法是Google搜索引擎的核心排序演算法,是Google成為全球最成功的搜索引擎的重要因素之一,同時開啟了鏈接分析研究的熱潮。
PageRank演算法的基本思想是:頁面的重要程度用PageRank值來衡量,PageRank值主要體現在兩個方面:引用該頁面的頁面個數和引用該頁面的頁面重要程度。一個頁面P(A)被另一個頁面P(B)引用,可看成P(B)推薦P(A),P(B)將其重要程度(PageRank值)平均的分配P(B)所引用的所有頁面,所以越多頁面引用P(A),則越多的頁面分配PageRank值給P(A),PageRank值也就越高,P(A)越重要。另外,P(B)越重要,它所引用的頁面能分配到的PageRank值就越多,P(A)的PageRank值也就越高,也就越重要。
其計算公式為:

PR(A):頁面A的PageRank值;
d:阻尼系數,由於某些頁面沒有入鏈接或者出鏈接,無法計算PageRank值,為避免這個問題(即LinkSink問題),而提出的。阻尼系數常指定為0.85。
R(Pi):頁面Pi的PageRank值;
C(Pi):頁面鏈出的鏈接數量;
PageRank值的計算初始值相同,為了不忽視被重要網頁鏈接的網頁也是重要的這一重要因素,需要反復迭代運算,據張映海撰文的計算結果,需要進行10次以上的迭代後鏈接評價值趨於穩定,如此經過多次迭代,系統的PR值達到收斂。
PageRank是一個與查詢無關的靜態演算法,因此所有網頁的PageRank值均可以通過離線計算獲得。這樣,減少了用戶檢索時需要的排序時間,極大地降低了查詢響應時間。但是PageRank存在兩個缺陷:首先PageRank演算法嚴重歧視新加入的網頁,因為新的網頁的出鏈接和入鏈接通常都很少,PageRank值非常低。另外PageRank演算法僅僅依靠外部鏈接數量和重要度來進行排名,而忽略了頁面的主題相關性,以至於一些主題不相關的網頁(如廣告頁面)獲得較大的PageRank值,從而影響了搜索結果的准確性。為此,各種主題相關演算法紛紛涌現,其中以以下幾種演算法最為典型。
2)Topic-Sensitive PageRank演算法
由於最初PageRank演算法中是沒有考慮主題相關因素的,斯坦福大學計算機科學系Taher Haveli-wala提出了一種主題敏感(Topic-Sensitive)的PageRank演算法解決了「主題漂流」問題。該演算法考慮到有些頁面在某些領域被認為是重要的,但並不表示它在其它領域也是重要的。
網頁A鏈接網頁B,可以看作網頁A對網頁B的評分,如果網頁A與網頁B屬於相同主題,則可認為A對B的評分更可靠。因為A與B可形象的看作是同行,同行對同行的了解往往比不是同行的要多,所以同行的評分往往比不是同行的評分可靠。遺憾的是TSPR並沒有利用主題的相關性來提高鏈接得分的准確性。
3)HillTop演算法
HillTop是Google的一個工程師Bharat在2001年獲得的專利。HillTop是一種查詢相關性鏈接分析演算法,克服了的PageRank的查詢無關性的缺點。HillTop演算法認為具有相同主題的相關文檔鏈接對於搜索者會有更大的價值。在Hilltop中僅考慮那些用於引導人們瀏覽資源的專家頁面(Export Sources)。Hilltop在收到一個查詢請求時,首先根據查詢的主題計算出一列相關性最強的專家頁面,然後根據指向目標頁面的非從屬專家頁面的數量和相關性來對目標頁面進行排序。
HillTop演算法確定網頁與搜索關鍵詞的匹配程度的基本排序過程取代了過分依靠PageRank的值去尋找那些權威頁面的方法,避免了許多想通過增加許多無效鏈接來提高網頁PageRank值的作弊方法。HillTop演算法通過不同等級的評分確保了評價結果對關鍵詞的相關性,通過不同位置的評分確保了主題(行業)的相關性,通過可區分短語數防止了關鍵詞的堆砌。
但是,專家頁面的搜索和確定對演算法起關鍵作用,專家頁面的質量對演算法的准確性起著決定性作用,也就忽略了大多數非專家頁面的影響。專家頁面在互聯網中占的比例非常低(1.79%),無法代表互聯網全部網頁,所以HillTop存在一定的局限性。同時,不同於PageRank演算法,HillTop演算法的運算是在線運行的,對系統的響應時間產生極大的壓力。
4)HITS
HITS(Hyperlink Inced Topic Search)演算法是Kleinberg在1998年提出的,是基於超鏈接分析排序演算法中另一個最著名的演算法之一。該演算法按照超鏈接的方向,將網頁分成兩種類型的頁面:Authority頁面和Hub頁面。Authority頁面又稱權威頁面,是指與某個查詢關鍵詞和組合最相近的頁面,Hub頁面又稱目錄頁,該頁面的內容主要是大量指向Authority頁面的鏈接,它的主要功能就是把這些Authority頁面聯合在一起。對於Authority頁面P,當指向P的Hub頁面越多,質量越高,P的Authority值就越大;而對於Hub頁面H,當H指向的Authority的頁面越多,Authority頁面質量越高,H的Hub值就越大。對整個Web集合而言,Authority和Hub是相互依賴、相互促進,相互加強的關系。Authority和Hub之間相互優化的關系,即為HITS演算法的基礎。
HITS基本思想是:演算法根據一個網頁的入度(指向此網頁的超鏈接)和出度(從此網頁指向別的網頁)來衡量網頁的重要性。在限定范圍之後根據網頁的出度和入度建立一個矩陣,通過矩陣的迭代運算和定義收斂的閾值不斷對兩個向量Authority和Hub值進行更新直至收斂。
實驗數據表明,HITS的排名准確性要比PageRank高,HITS演算法的設計符合網路用戶評價網路資源質量的普遍標准,因此能夠為用戶更好的利用網路信息檢索工具訪問互聯網資源帶來便利。
但卻存在以下缺陷:首先,HITS演算法只計算主特徵向量,處理不好主題漂移問題;其次,進行窄主題查詢時,可能產生主題泛化問題;第三,HITS演算法可以說一種實驗性質的嘗試。它必須在網路信息檢索系統進行面向內容的檢索操作之後,基於內容檢索的結果頁面及其直接相連的頁面之間的鏈接關系進行計算。盡管有人嘗試通過演算法改進和專門設立鏈接結構計算伺服器(Connectivity Server)等操作,可以實現一定程度的在線實時計算,但其計算代價仍然是不可接受的。
2.3基於智能化排序的第三代搜索引擎
排序演算法在搜索引擎中具有特別重要的地位,目前許多搜索引擎都在進一步研究新的排序方法,來提升用戶的滿意度。但目前第二代搜索引擎有著兩個不足之處,在此背景下,基於智能化排序的第三代搜索引擎也就應運而生。
1)相關性問題
相關性是指檢索詞和頁面的相關程度。由於語言復雜,僅僅通過鏈接分析及網頁的表面特徵來判斷檢索詞與頁面的相關性是片面的。例如:檢索「稻瘟病」,有網頁是介紹水稻病蟲害信息的,但文中沒有「稻瘟病」這個詞,搜索引擎根本無法檢索到。正是以上原因,造成大量的搜索引擎作弊現象無法解決。解決相關性的的方法應該是增加語意理解,分析檢索關鍵詞與網頁的相關程度,相關性分析越精準,用戶的搜索效果就會越好。同時,相關性低的網頁可以剔除,有效地防止搜索引擎作弊現象。檢索關鍵詞和網頁的相關性是在線運行的,會給系統相應時間很大的壓力,可以採用分布式體系結構可以提高系統規模和性能。
2)搜索結果的單一化問題
在搜索引擎上,任何人搜索同一個詞的結果都是一樣。這並不能滿足用戶的需求。不同的用戶對檢索的結果要求是不一樣的。例如:普通的農民檢索「稻瘟病」,只是想得到稻瘟病的相關信息以及防治方法,但農業專家或科技工作者可能會想得到稻瘟病相關的論文。
解決搜索結果單一的方法是提供個性化服務,實現智能搜索。通過Web數據挖掘,建立用戶模型(如用戶背景、興趣、行為、風格),提供個性化服務。

B. 關於excel中lookup函數,當要查找的值出現重復時,是按什麼原則返加結果

應該使用VLOOKUP函數,

具體公式為:=VLOOKUP(C1,$A$1:$B$2,2,FALSE)

如有疑問可以繼續交流!!!

C. 什麼是查找法

演算法思想:

將數列按有序化(遞增或遞減)排列,查找過程中採用跳躍式方式查找,即先以有序數列的中點位置為比較對象,如果要找的元素值小於該中點元素,則將待查序列縮小為左半部分,否則為右半部分。通過一次比較,將查找區間縮小一半。

折半查找是一種高效的查找方法。它可以明顯減少比較次數,提高查找效率。但是,折半查找的先決條件是查找表中的數據元素必須有序。

演算法步驟描述:

step1 首先確定整個查找區間的中間位置
mid = ( left + right )/ 2

step2 用待查關鍵字值與中間位置的關鍵字值進行比較;

若相等,則查找成功

若大於,則在後(右)半個區域繼續進行折半查找

若小於,則在前(左)半個區域繼續進行折半查找
Step3 對確定的縮小區域再按折半公式,重復上述步驟。最後,得到結果:要麼查找成功, 要麼查找失敗。
折半查找的存儲結構採用一維數組存放。

折半查找演算法舉例

對給定數列(有序){ 3,5,11,17,21,23,28,30,32,50},按折半查找演算法,查找關鍵字值為30的數據元素。

折半查找的演算法討論:

優點: ASL≤log2n,即每經過一次比較,查找范圍就縮小一半。經log2n 次計較就可以完成查找過程。

缺點:因要求有序,所以要求查找數列必須有序,而對所有數據元素按大小排序是非常費時的操作。另外,順序存儲結構的插入、刪除操作不便利。

考慮:能否通過一次比較拋棄更多的部分(即經過一次比較,使查找范圍縮得更小),以達到提高效率的目的。……?

可以考慮把兩種方法(順序查找和折半查找)結合起來,即取順序查找簡單和折半查找高效之所長,來達到提高效率的目的?實際上這就是分塊查找的演算法思想。

例如:[問題分析] 由於數據按升序排列,故用折半查找最快捷.
program binsearch;
const max=10;
var num:array[1..max] of integer;
i,n:integer;
procere search(x,a,b:integer);
var mid:integer;
begin
if a=b then
if x=num[a] then writeln('Found:',a) else writeln('Number not found')
else begin
mid:=(a+b) div 2;
if x>num[mid] then search(x,mid,b);
if x<num[mid] then search(x,a,mid);
if x=num[mid] then writeln('Found:',mid);
end;
end;
begin
write('Please input 10 numbers in order:');
for i:=1 to max do read(num);
write('Please input the number to search:');
readln(n);
search(n,1,max);
end.

Java風格的代碼舉例:
//使用折半法進行查找
int getIndex(int[] nList, int nCount, int nCode) {
int nIndex = -1;
int jMin = 0;
int jMax = nCount - 1;
int jCur = (jMin+jMax)/2;
do
{
if(nList[jCur] > nCode) {
jMax--;
} else if(nList[jCur] < nCode) {
jMin++;
} else if(nList[jCur] == nCode) {
nIndex = jCur;
break;
}
jCur = (jMin + jMax)/2;
} while(jMin < jMax);

return nIndex;
}

二分查找的性能說明

雖然二分查找的效率高,但是要將表按關鍵字排序。而排序本身是一種很費時的運算。既使採用高效率的排序方法也要花費 O(n lg n) 的時間。
二分查找只適用順序存儲結構。為保持表的有序性,在順序結構里插入和刪除都必須移動大量的結點。因此,二分查找特別適用於那種一經建立就很少改動、而又經常需要查找的線性表。
對那些查找少而又經常需要改動的線性表,可採用鏈表作存儲結構,進行順序查找。鏈表上無法實現二分查找

二分查找的C#實現代碼:
using System;
using System.Collections.Generic;
using System.Text;
namespace BinschDemo
{
public class BinschDemo
{
public static int Binsch(int[] a, int key)
{
int low = 1;
int high = a.Length;
while (low <= high)
{
int mid = (low + high) / 2;
if (key == a[mid])
{
return mid; //返回找到的索引值
}
else
{
if (key < a[mid])
high = mid - 1;
else
low = mid + 1;
}
}
return -1; //查找失敗
}
static void Main(string[] args)
{
Console.WriteLine("請輸入10個遞增數字: ");
int[] list = new int[10];
for (int i = 0; i < 10; i++)
{
Console.Write("數字 : ", i);
list = Convert.ToInt32(Console.ReadLine());
}
Console.Write("請輸入一個你要查找的數字:");
int find = Convert.ToInt32(Console.ReadLine());
int result = Binsch(list, find);
Console.WriteLine(result);
}
}
}

分塊查找又索引查找,它主要用於「分塊有序」表的查找。所謂「分塊有序」是指將線性表L(一維數組)分成m個子表(要求每個子表的長度相等),且第i+1個子表中的每一個項目均大於第i個子表中的所有項目。「分塊有序」表應該包括線性表L本身和分塊的索引表A。因此,分塊查找的關鍵在於建立索引表A。
(1)建立索引表A(二維數組)
索引表包括兩部分:關鍵字項(子表中的最大值)和指針項(子表的第一項在線性表L中位置)
索引表按關鍵字有序的。
例如:線性表L(有序)為:1 2 3 4 5 6 7 8 9 10 11 12
分成m=3個子表:{1 2 3 4} {5 6 7 8} {9 10 11 12}
索引表A:二維數組:第一列為每個子表的最大值 ,第二列為每個子表的起始地址
即: 4 0
8 4
12 8
(2)利用索引表A,確定待查項X所在的子表(塊)。
(3)在所確定的子表中可以用「折半查找」法搜索待查項X;若找到則輸出X;否則輸出未找到信息。

D. 散列表的平均查找長度怎麼計算

對於含有n個數據元素的查找表,查找成功的平均查找長度為:ASL=∑PiCi (i=1,2,3,…,n),可以簡單以數學上的期望來這么理解。其中:Pi 為查找表中第i個數據元素的概率,Ci為找到第i個數據元素時已經比較過的次數。

在查找表中查找不到待查元素,但是找到待查元素應該在表中存在的位置的平均查找次數稱為查找不成功時的平均查找長度,不成功。

(4)查找演算法公式擴展閱讀

散列表的查找過程基本上和造表過程相同。一些關鍵碼可通過散列函數轉換的地址直接找到,另一些關鍵碼在散列函數得到的地址上產生了沖突,需要按處理沖突的方法進行查找。在介紹的三種處理沖突的方法中,產生沖突後的查找仍然是給定值與關鍵碼進行比較的過程。所以,對散列表查找效率的量度,依然用平均查找長度來衡量。

查找過程中,關鍵碼的比較次數,取決於產生沖突的多少,產生的沖突少,查找效率就高,產生的沖突多,查找效率就低。因此,影響產生沖突多少的因素,也就是影響查找效率的因素。影響產生沖突多少有以下三個因素:

1、散列函數是否均勻;

2、處理沖突的方法;

3、散列表的裝填因子。

散列表的裝填因子定義為:α= 填入表中的元素個數 / 散列表的長度

α是散列表裝滿程度的標志因子。由於表長是定值,α與「填入表中的元素個數」成正比,所以,α越大,填入表中的元素較多,產生沖突的可能性就越大;α越小,填入表中的元素較少,產生沖突的可能性就越小。

實際上,散列表的平均查找長度是裝填因子α的函數,只是不同處理沖突的方法有不同的函數。

參考資料來源:網路-平均查找長度

參考資料來源:網路-散列表

E. 哈希查找演算法的時間復雜度是多少 給個公式

O(1),哈希表是通過計算hashcode來定位元素位置,所以只需一次即可

F. 搜索演算法中,A演算法A*演算法的區別(急)

a*演算法:a*(a-star)演算法是一種靜態路網中求解最短路徑最有效的直接搜索方法。估價值與實際值越接近,估價函數取得就越好
a*
(a-star)演算法是一種靜態路網中求解最短路最有效的直接搜索方法。
注意是最有效的直接搜索演算法。之後涌現了很多預處理演算法(alt,ch,hl等等),在線查詢效率是a*演算法的數千甚至上萬倍。
公式表示為:
f(n)=g(n)+h(n),
其中
f(n)
是從初始點經由節點n到目標點的估價函數,
g(n)
是在狀態空間中從初始節點到n節點的實際代價,
h(n)
是從n到目標節點最佳路徑的估計代價。
保證找到最短路徑(最優解的)條件,關鍵在於估價函數f(n)的選取:
估價值h(n)<=
n到目標節點的距離實際值,這種情況下,搜索的點數多,搜索范圍大,效率低。但能得到最優解。並且如果h(n)=d(n),即距離估計h(n)等於最短距離,那麼搜索將嚴格沿著最短路徑進行,
此時的搜索效率是最高的。
如果
估價值>實際值,搜索的點數少,搜索范圍小,效率高,但不能保證得到最優解。

G. 從ASL公式,如何可以提高查找演算法的效率

根據查找演算法是否改變查找表的內容,將查找演算法分為靜態查找和動態查找。靜態查找對查找表查找時,查找成功就返回記錄的信息或在查找表中的位置,查找失敗就返回一個代表失敗的標志,並不對查找表進行插入和刪除,或經過一段時間之後再對查找表進行集中式的插入和刪除操作。動態查找是查找與插入和刪除在同一階段進行,例如,在某些問題中,查找成功時,刪除查找到的記錄,查找失敗時,插入被查找的記錄。
查找結構
為了提高查找效率,為帶查找序列選擇合適的數據結構以存儲這些數據,這種面向查找的數據結構就稱為查找結構。主要有以下三種數據結構:
1)線性表:適用於靜態查找,查找方法有順序查找和二分查找。
2)樹表:適應於動態查找,查找方法是採用二叉排序樹進行查找(類似二分查找過程)。
3)哈希表:靜態和動態查找均合適,查找方法是哈希技術。

H. C語言 二分法查找次數公式怎麼推導

對具有n個元素的有序數組進行二分法查找,要分析的比較次數,可以使用畫二叉判定樹的方法來分析。該二叉判定樹的高度為[log2(n)]+1層,此即為二分查找的最多比較次數,比如:n=1000,則最多比較[log2(1000)]+1=9+1=10次。

如果要計算平均的比較次數,則需要對二叉判定樹中的每個節點進行分析,處於第一層的比較1次,第二層的比較2次,第三層比較3次,依次類推……把各個節點的比較次數累加,再處於節點數(元素個數)即為平均比較次數,這里假設查找是在等概率的情況下進行的。

舉個例子:有9個元素的有序數組,對每個元素按1,2,3...8,9進行編號,則其二叉判定樹如下:



這樣分析,能看懂嗎?希望能幫到你!

I. 幾種常用的演算法簡介

1、窮舉法窮舉法是最基本的演算法設計策略,其思想是列舉出問題所有的可能解,逐一進行判別,找出滿足條件的解。
窮舉法的運用關鍵在於解決兩個問題:
在運用窮舉法時,容易出現的問題是可能解過多,導致演算法效率很低,這就需要對列舉可能解的方法進行優化。
以題1041--純素數問題為例,從1000到9999都可以看作是可能解,可以通過對所有這些可能解逐一進行判別,找出其中的純素數,但只要稍作分析,就會發現其實可以大幅度地降低可能解的范圍。根據題意易知,個位只可能是3、5、7,再根據題意可知,可以在3、5、7的基礎上,先找出所有的二位純素數,再在二位純素數基礎上找出三位純素數,最後在三位純素數的基礎上找出所有的四位純素數。
2、分治法分治法也是應用非常廣泛的一種演算法設計策略,其思想是將問題分解為若乾子問題,從而可以遞歸地求解各子問題,再綜合出問題的解。
分治法的運用關鍵在於解決三個問題:
我們熟知的如漢諾塔問題、折半查找演算法、快速排序演算法等都是分治法運用的典型案例。
以題1045--Square Coins為例,先對題意進行分析,可設一個函數f(m, n)等於用面值不超過n2的貨幣構成總值為m的方案數,則容易推導出:
f(m, n) = f(m-0*n*n, n-1)+f(m-1*n*n, n-1)+f(m-2*n*n, n-1)+...+f(m-k*n*n, n-1)
這里的k是幣值為n2的貨幣最多可以用多少枚,即k=m/(n*n)。
也很容易分析出,f(m, 1) = f(1, n) = 1
對於這樣的題目,一旦分析出了遞推公式,程序就非常好寫了。所以在動手開始寫程序之前,分析工作做得越徹底,邏輯描述越准確、簡潔,寫起程序來就會越容易。
3、動態規劃法
動態規劃法多用來計算最優問題,動態規劃法與分治法的基本思想是一致的,但處理的手法不同。動態規劃法在運用時,要先對問題的分治規律進行分析,找出終結子問題,以及子問題向父問題歸納的規則,而演算法則直接從終結子問題開始求解,逐層向上歸納,直到歸納出原問題的解。
動態規劃法多用於在分治過程中,子問題可能重復出現的情況,在這種情況下,如果按照常規的分治法,自上向下分治求解,則重復出現的子問題就會被重復地求解,從而增大了冗餘計算量,降低了求解效率。而採用動態規劃法,自底向上求解,每個子問題只計算一次,就可以避免這種重復的求解了。
動態規劃法還有另外一種實現形式,即備忘錄法。備忘錄的基本思想是設立一個稱為備忘錄的容器,記錄已經求得解的子問題及其解。仍然採用與分治法相同的自上向下分治求解的策略,只是對每一個分解出的子問題,先在備忘錄中查找該子問題,如果備忘錄中已經存在該子問題,則不須再求解,可以從備忘錄中直接得到解,否則,對子問題遞歸求解,且每求得一個子問題的解,都將子問題及解存入備忘錄中。
例如,在題1045--Square Coins中,可以採用分治法求解,也可以採用動態規劃法求解,即從f(m, 1)和f(1, n)出發,逐層向上計算,直到求得f(m, n)。
在競賽中,動態規劃和備忘錄的思想還可以有另一種用法。有些題目中的可能問題數是有限的,而在一次運行中可能需要計算多個測試用例,可以採用備忘錄的方法,預先將所有的問題的解記錄下來,然後輸入一個測試用例,就查備忘錄,直接找到答案輸出。這在各問題之間存在父子關系的情況下,會更有效。例如,在題1045--Square Coins中,題目中已經指出了最大的目標幣值不超過300,也就是說問題數只有300個,而且各問題的計算中存在重疊的子問題,可以採用動態規劃法,將所有問題的解先全部計算出來,再依次輸入測試用例數據,並直接輸出答案。
4、回溯法回溯法是基於問題狀態樹搜索的求解法,其可適用范圍很廣。從某種角度上說,可以把回溯法看作是優化了的窮舉法。回溯法的基本思想是逐步構造問題的可能解,一邊構造,一邊用約束條件進行判別,一旦發現已經不可能構造出滿足條件的解了,則退回上一步構造過程,重新進行構造。這個退回的過程,就稱之為回溯。
回溯法在運用時,要解決的關鍵問題在於:
回溯法的經典案例也很多,例如全排列問題、N後問題等。
5、貪心法貪心法也是求解最優問題的常用演算法策略,利用貪心法策略所設計的演算法,通常效率較高,演算法簡單。貪心法的基本思想是對問題做出目前看來最好的選擇,即貪心選擇,並使問題轉化為規模更小的子問題。如此迭代,直到子問題可以直接求解。
基於貪心法的經典演算法例如:哈夫曼演算法、最小生成樹演算法、最短路徑演算法等。

熱點內容
java代碼自動編譯 發布:2025-01-16 19:58:14 瀏覽:313
編程很困難 發布:2025-01-16 19:58:09 瀏覽:673
gg登錄源碼 發布:2025-01-16 19:58:07 瀏覽:292
微信收藏表情文件夾 發布:2025-01-16 19:28:57 瀏覽:15
ra伺服器搭建 發布:2025-01-16 19:28:12 瀏覽:18
javaftp讀取 發布:2025-01-16 19:28:02 瀏覽:185
樂課上傳作業 發布:2025-01-16 19:24:58 瀏覽:936
哈爾濱python培訓 發布:2025-01-16 19:19:30 瀏覽:915
java對象與線程 發布:2025-01-16 19:14:59 瀏覽:897
二維碼源碼vc 發布:2025-01-16 19:14:59 瀏覽:774