圖像分割演算法實現
❶ 幾種圖像閾值分割演算法的實現與比較
摘要:圖像分割是進行圖像分析的關鍵步驟,也是進一步理解圖像的基礎。該文主要論述了常用的幾種圖像閾值分割的演算法及原理,並以研究瀝青混合料的集料特徵為背景,從實驗角度對圖像閾值分割的直方圖閾值法、迭代法和大津法進行了分析比較,得出了結論。關鍵詞:圖像分割;直方圖閾值法;迭代法;大津法中圖分類號:TP391 文獻標識碼:A文章編號:1009-3044(2011)13-3109-03Achieve and Comparison of Image Segmentation Thresholding MethodCHEN Ning-ning(Department of Technology, Xi'an International University, Xi'an 710077, China)Abstract: Image segmentation is a key step for image analysis, Is also the basis for further understanding of the image. In this paper, discusses several commonly used image segmentation algorithms and theory, and to study the aggregate asphalt mixture characteristics of the background, experimental results are shown to compare histogram threshold, Iteration method and the Otsu.Key words: image segmentation; histogram threshold; iteration method; Otsu1 概述圖像分割是進行圖像分析的關鍵步驟,也是進一步理解圖像的基礎。
❷ 如何用區域生長法實現圖像分割
區域生長法圖像分割是直接根據像素的相似性和連通性來對圖像進行聚類的演算法。基本原理是,給出若干種子點,然後依次對這些種子點進行如下操作,直到種子點集合為空:判斷種子點四鄰域或八鄰域的像素點是否和種子點相似(灰度相似或其他測度相似),如果相似則將該點加入種子點集合,否則不作處理。
該演算法原理很簡單,但在數據結構的組織上卻需要技巧,本文介紹一種簡易的數據組織方式實現該演算法。
如上圖所示,左圖為一幅W*H大小的圖像示意圖,利用區域生長法圖像分割演算法,該圖像被分割(聚類)為7塊;右圖為相應的數據結構,圖像分割的結果屬於圖像空間數據,其實就是一系列的像素點坐標數組或與像素點坐標直接關聯的屬性數組如FLAG的數組等,這個數組的維度一定是W*H,而分割結果體現在數組元素的排列順序:同一類別的元素連續存儲。然而類別的界限無法用該數組表明,而只能用另外一個描述數組,這里我們稱之為圖像空間數據的「元數據」數據,這個數組的有效維度為空間數據的類別數,即7,每個元素代表的是空間數據數組中每個類別的元素個數,其實也就相應地表明了每個類別的指針位置。
❸ 圖像處理演算法問題~~~~分割與拼接
只能給你點提示。以2值化演算法為中心取要分割的部分,再把被分割圖片變成二維數組或一維數組,替換到被加圖片的數組值上就可以了。演算法挺容易的,就是麻煩點,呵呵。
❹ 目前應用最廣的圖像分割演算法是什麼
小波變換是近年來得到了廣泛應用的數學工具,它在時域和頻域都具有良好的局部化性質,而且小波變換具有多尺度特性,能夠在不同尺度上對信號進行分析,因此在圖像處理和分析等許多方面得到應用。
基於小波變換的閾值圖像分割方法的基本思想是首先由二進小波變換將圖像的直方圖分解為不同層次的小波系數,然後依據給定的分割准則和小波系數選擇閾值門限,最後利用閾值標出圖像分割的區域。整個分割過程是從粗到細,有尺度變化來控制,即起始分割由粗略的L2(R)子空間上投影的直方圖來實現,如果分割不理想,則利用直方圖在精細的子空間上的小波系數逐步細化圖像分割。分割演算法的計算饋與圖像尺寸大小呈線性變化。
❺ 圖像分割的特定理論
圖像分割至今尚無通用的自身理論。隨著各學科許多新理論和新方法的提出,出現了許多與一些特定理論、方法相結合的圖像分割方法。 特徵空間聚類法進行圖像分割是將圖像空間中的像素用對應的特徵空間點表示,根據它們在特徵空間的聚集對特徵空間進行分割,然後將它們映射回原圖像空間,得到分割結果。其中,K均值、模糊C均值聚類(FCM)演算法是最常用的聚類演算法。K均值演算法先選K個初始類均值,然後將每個像素歸入均值離它最近的類並計算新的類均值。迭代執行前面的步驟直到新舊類均值之差小於某一閾值。模糊C均值演算法是在模糊數學基礎上對K均值演算法的推廣,是通過最優化一個模糊目標函數實現聚類,它不像K均值聚類那樣認為每個點只能屬於某一類,而是賦予每個點一個對各類的隸屬度,用隸屬度更好地描述邊緣像素亦此亦彼的特點,適合處理事物內在的不確定性。利用模糊C均值(FCM)非監督模糊聚類標定的特點進行圖像分割,可以減少人為的干預,且較適合圖像中存在不確定性和模糊性的特點。
FCM演算法對初始參數極為敏感,有時需要人工干預參數的初始化以接近全局最優解,提高分割速度。另外,傳統FCM演算法沒有考慮空間信息,對雜訊和灰度不均勻敏感。 模糊集理論具有描述事物不確定性的能力,適合於圖像分割問題。1998年以來,出現了許多模糊分割技術,在圖像分割中的應用日益廣泛。模糊技術在圖像分割中應用的一個顯著特點就是它能和現有的許多圖像分割方法相結合,形成一系列的集成模糊分割技術,例如模糊聚類、模糊閾值、模糊邊緣檢測技術等。
模糊閾值技術利用不同的S型隸屬函數來定義模糊目標,通過優化過程最後選擇一個具有最小不確定性的S函數。用該函數增強目標及屬於該目標的像素之間的關系,這樣得到的S型函數的交叉點為閾值分割需要的閾值,這種方法的困難在於隸屬函數的選擇。基於模糊集合和邏輯的分割方法是以模糊數學為基礎,利用隸屬圖像中由於信息不全面、不準確、含糊、矛盾等造成的不確定性問題。該方法在醫學圖像分析中有廣泛的應用,如薛景浩 等人提出的一種新的基於圖像間模糊散度的閾值化演算法以及它在多閾值選擇中的推廣演算法,採用了模糊集合分別表達分割前後的圖像,通過最小模糊散度准則來實現圖像分割中最優閾值的自動提取。該演算法針對圖像閾值化分割的要求構造了一種新的模糊隸屬度函數,克服了傳統S函數帶寬對分割效果的影響,有很好的通用性和有效性,方案能夠快速正確地實現分割,且不需事先認定分割類數。實驗結果令人滿意。 概述
小波變換是2002年來得到了廣泛應用的數學工具,它在時域和頻域都具有良好的局部化性質,而且小波變換具有多尺度特性,能夠在不同尺度上對信號進行分析,因此在圖像處理和分析等許多方面得到應用。
小波變換的分割方法
基於小波變換的閾值圖像分割方法的基本思想是首先由二進小波變換將圖像的直方圖分解為不同層次的小波系數,然後依據給定的分割准則和小波系數選擇閾值門限,最後利用閾值標出圖像分割的區域。整個分割過程是從粗到細,有尺度變化來控制,即起始分割由粗略的L2(R)子空間上投影的直方圖來實現,如果分割不理想,則利用直方圖在精細的子空間上的小波系數逐步細化圖像分割。分割演算法的計算饋與圖像尺寸大小呈線性變化。
❻ 圖像分割演算法 的大致流程(最好是MRF)
http://..com/question/29169347.html
❼ 基於影像特徵的圖像分割
通過遙感變化信息檢測方法對兩時相遙感影像進行處理分析後,得到 「變化信息」影像,同時為了便於後續震害信息的識別,需要把這些變化信息從復雜的環境背景中提取出來,得到一個僅包含變化信息的二值影像,這里就需要用到圖像分割 ( ImageSegmentation ) 技術。圖 像 分 割 包括 手 動分 割 和 自動分割兩種,手動分割是指操作者利用相關的經驗進行小圖斑的合並、提取和取捨,但是對於大區域遙感影像來說,手工操作工作量大、效率低、速度慢、周期長、容易漏掉小圖斑,並且分割圖斑的邊界容易受到操作者的主觀控制,對精度的影響也較大,所以本研究中的圖像分割一般指的是自動分割。
退化廢棄地遙感信息提取研究
圖 4 -11 基於 MNF/ICA 多源遙感變化信息檢測法結果從 20 世紀 70 年代起,圖像分割方法一直受到各國學者的關注,至今已經提出了很多種分割方法,FuK. S. ( 1981) 將分割方法分成閾值分割、邊緣分割和區域分割,實際上區域分割包含了閾值分割。蔡殉、朱波 ( 2002) 則將圖像分割方法分成更多的類別,包括閾值分割、彩色分割、基於模糊集法、深度分割、像素分割、區域增長法,其中彩色分割、深度分割和像素分割都屬於閾值分割。
由於現今遙感變化信息檢測還處於像元級別 ( 鍾家強,2005) ,通過不同檢測方法,對灰度、彩色影像進行處理變換,使得變化信息的灰度 ( 像素值) 和色彩信息得到加強,通常表現出灰白色 ( 圖 4 - 8、圖 4 - 9) 和亮綠色 ( 圖 4 - 11) ,與周圍地物的色標不協調,可以通過確定相關的變化閾值把變化區域分割出來。但是由於變化信息受到太陽輻射、大氣干擾、感測器參數、空間解析度、光譜解析度以及季節差異等因素影響,變化圖斑的灰度有時在一定的范圍內波動,增加了變化信息精確分割的難度,這使得變化閾值的確定顯得尤為重要。
( 一) 變化影像特徵分析
通過多時相遙感變化信息檢測方法得到的灰度或彩色影像通常具有以下特徵: ① 影像中光譜特徵復雜,包含的地物類型眾多,但是變化信息和背景環境的光譜性質不一致。② 灰度影像的變換信息圖斑一般分布在灰度軸的兩端 ( 就是較亮的區域) ,不過有時也可能位於暗端,極少數情況下也可能位於兩者之間,這要根據具體的遙感數據和採用何種檢測方法來定; 彩色影像變化信息圖斑一般為亮綠色,是否能夠和周圍地物類型明顯區分要根據實際情況而定。③ 變化信息圖斑內部的灰度值比較均勻,但是會在一定范圍內波動,所以圖像分割時很容易丟失細小的圖斑。④ 變化信息圖斑之間灰度特徵比較相似 ( 一致) ,但是紋理特徵的差別通常較明顯,因為變化信息的圖斑可能屬於不同的地物類型,所以通常不能用紋理信息來分割變化信息圖斑。⑤ 由於非人為控制的因素,影像中不可避免地存在一些雜訊信息,這些雜訊信息一般表現在與變化信息圖斑接近的小圖斑( 圖 4 - 9 表現得特別明顯) ,所以分割的時候要區分哪些是變化信息圖斑,哪些是雜訊圖斑。⑥ 對於不同的環境和區域,變化信息圖斑是服從隨機分布的,有的地方稀疏,有的地方密集。
( 二) 單閾值區域分割法
單閾值區域分割是一種簡單有效的圖像分割方法,其用一個閾值將變化圖像的灰度級分為兩個部分: 變化與未變化。其最大特點是計算簡單,在重視運算效率的應用場合 ( 例如用於硬體實現) 得到了廣泛應用 ( 馮德俊,2004) 。一般是利用圖像的灰度直方圖來確定分割閾值。在計算分割閾值時,常在去除雜訊的基礎上將灰度直方圖包絡成一條曲線,如果圖像上有多個特徵區域,其直方圖就會出現多個峰值,每個峰值對應一個特徵區域,而谷底值點就為分割閾值,用以劃分不同的特徵區域。
復雜圖像的目標和背景的灰度值時常有部分交錯,為了在分割時使這種錯誤分割的概率最小,需要尋找出最優的分割閾值,所以單閾值區域分割法也叫最優閾值法,意指能夠使分割誤差最小。圖像的灰度直方圖可以看成是像元灰度值的概率分布密度函數,假設一幅圖像僅含有目標和背景兩個主要的灰度值區域,那麼其直方圖就表示對應目標和背景兩個單峰值的概率分布密度函數之和,如果已知密度函數的形式,就可以計算出使誤差最小的最優閾值。其計算原理如下:
假設一幅含有高斯雜訊的圖像,其背景和目標的直方圖(概率密度函數)分別為pb(z)和po(z),那麼整個圖像的混合概率密度p(z)為(章毓晉,2001):
退化廢棄地遙感信息提取研究
式中:σb和σo分別為背景和目標均值的均方差;μb和μo分別為背景和目標的平均灰度值;pb和po分別為背景和目標區域灰度的先驗概率,二者之和為1。如果μb<μo,需要確定閾值T,將小於閾值的分割作為背景,大於閾值的分割作為目標,假設將目標像元錯誤地劃分為背景以及把背景錯誤地劃分為目標的概率分別為Eb(T)和Eo(T),則總的誤差為兩者之和E(T)。為了使該誤差最小,將總誤差對T求導數,並令導數為零,得到
退化廢棄地遙感信息提取研究
將該式代入式(4-3),可得二項式
退化廢棄地遙感信息提取研究
求解該二項式得到最優閾值
退化廢棄地遙感信息提取研究
最優閾值T的選取原理如圖4-12所示,其原理可以概括為:將經過平滑去噪後的直方圖看成一條曲線h(x),最優閾值T必須滿足以下兩個條件:
退化廢棄地遙感信息提取研究
圖4-12 最優閾值選取原理
設原始圖像 f( x,y) 的灰度值范圍為 G =[0,L -1],用最優單閾值法把圖像分成兩類,最優分割閾值為 T ( 0 < T < L -1) ,分割後生成的二值影像為 g( x,y) :
退化廢棄地遙感信息提取研究
本研究在 ERDAS 軟體下利用空間建模語言 ( SML) 實現了單閾值 ( 最優閾值) 法,分別分析了圖 4 -8、圖 4 -9 和圖 4 -11 變化影像的直方圖分布情況 ( 圖 4 -13) ,並進行了最優閾值區域分割,把得到的三幅二值變化信息影像取合集,即把三幅影像相加,保留所有大於 1 的像素點,最後得到變化區域二值影像,如圖 4 -14 所示。
圖 4 -13 三幅變化影像的直方圖曲線
圖 4 -14 單閾值法提取的變化信息二值影像( 白色區域為發生變化的區域)
圖 4 -15 雙閾值模糊識別法計算流程
(三)雙閾值模糊識別分割法
由於單閾值區域分割法只有一個全局閾值參與影像分割,然而影像受到大氣、雜訊、光照以及背景灰度變化的共同影響,導致了變化信息的灰度值總是在一定范圍內波動,常常出現變化信息和雜訊以及其他地物類別交錯的現象。在這種情況下,單閾值區域分割難以滿足精度的要求,如何區分出其中的變化信息?本研究提出了雙閾值模糊識別分割法,其流程如圖4-15所示。
利用變化圖像的灰度直方圖計算得到兩個閾值T1和T2,並且T1<T2,然後利用雙閾值法對變化圖像進行分割(DaneKottkeetal.,1989、1998),將圖像f(x,y)分割為三個類別:背景、不確定類、變化信息:
退化廢棄地遙感信息提取研究
對其中不確定的像元保留其灰度值不變,利用模糊識別運算元構建目標函數,分別計算出該像元屬於兩種不同類別(背景和變化信息)的模糊隸屬度,通過比較兩種隸屬度的大小判斷其歸屬(把它歸類到隸屬度大的那一類當中),劃分到背景與變化信息當中,直到完成所有不確定像元的劃分,即完成了整個分割過程。
1.雙閾值T1和T2的計算
核心閾值T1的計算按照公式4-5的單閾值(最優閾值法)區域分割法得到。核心閾值T2則是利用灰度直方圖中大於T1閾值的像元灰度求平均值得到。
設影像的灰度值在0到255之間(8維圖像),利用離散積分的原理來計算灰度的均值。如果利用單閾值法計算出來的最優閾值為T1,那麼核心閾值T2的計算公式如下:
退化廢棄地遙感信息提取研究
式中:ni表示變化圖像中灰度為i的像元出現的個數。
2.模糊識別演算法
模糊識別演算法的基本思想如下(李希燦等,2003、2008):
首先將樣本集規格化,就是把樣本集的特徵值規格化到0到1之間,設樣本特徵值y規格化為x,樣本集n個樣本劃分為C個類別,則模糊識別矩陣為
退化廢棄地遙感信息提取研究
式中:Uhj為樣本j歸屬於第h類的相對隸屬度,h=1,2,…,C,且應當滿足以下條件:
退化廢棄地遙感信息提取研究
設C個類別的特徵值為標准指數或模糊聚類中心指標,則C個類別的中心指標向量為:
退化廢棄地遙感信息提取研究
式中:Sh為第h類的中心指標,0≤Sh≤1且h=1,2,…,c,為了求解最優模糊識別矩陣U和模糊最優中心指標S,建立目標函數(李希燦,1998):
退化廢棄地遙感信息提取研究
式4-14的意義是:樣本集對於全體類別的加權廣義海明距離平方和為最小。顯然,在不分類別(h=1,Uhj=1)的情況下,該公式變為通常的最小二乘最優准則。在式4-14的目標函數下,計算出最優模糊劃分的隸屬度和中心指標向量:
退化廢棄地遙感信息提取研究
式中:u*hj為樣本j隸屬於h類的隸屬度。
3.分割歸類
通過構造的目標函數(隸屬度函數),分別計算出每個像素點屬於「目標」(變化信息)和「背景」(非變化信息)的隸屬度,並把它分入到隸屬度大的那一類當中,從而完成圖像分割的過程。
圖4-16 雙閾值模糊識別分割法二值影像
(白色區域為變化信息)
通過在ERDAS下利用空間建模語言(SML)實現該分割演算法,分別將圖4-8、圖4-9和圖4-11變化圖像作為輸入對象,進行雙閾值模糊識別分割,得到的二值變化圖像取合集最終結果如圖4-16所示。從圖4-16中可以看出,雙閾值模糊識別分割法能夠在一定程度上消除單閾值區域分割法中混雜在變化信息中的離散雜訊和個別地物類型,使變化信息更加准確、集中,從而提高了分割的精度。實踐證明,雙閾值模糊識別分割法有著堅實的理論基礎,並且在實際變化信息的分割中能夠取得很好的效果,是一種可行、可靠的圖像分割自動演算法。
❽ 請高手幫忙:MATLAB程序 編寫一個程序,要求實現下列演算法:首先將圖像分割成許多8X8的子圖像
clearall;
closeall;
clc;
I=double(imread('elain.bmp'));%讀入圖像
imshow(uint8(I));%顯示圖像
[Mro,Nco]=size(I);%獲得讀入圖像的大小
fun1=@fft2;%獲得fft變換函數的句柄
Imagefft=blkproc(I,[8,8],fun1);%圖像塊進行fft變換
Imtemp=double(zeros(Mro,Nco));%設置臨時變數用於存處理後的圖像值
forii=1:8:Mro
forjj=1:8:Nco
Imtemp(ii:ii+3,jj:jj+3)=Imagefft(ii:ii+3,jj:jj+3);%捨去小的變換系數
end
end
fun2=@ifft2;
Imageifft=blkproc(Imtemp,[8,8],fun2);%分塊逆變換
huifu=uint8(abs(Imageifft));%取整
figure;
imshow(huifu);%顯示圖像