粒子群演算法pdf
㈠ 粒子群演算法優化相關書籍
侯志榮.基於MATLAB的粒子群優化演算法及其應用〔j〕.《計算機模擬》,2004年05期.
高鷹.具有遺傳特性的粒子群優化演算法的非線性盲分離中的應用〔j〕.《廣州大學學報》,2006年5卷5期.
㈡ 粒子群優化演算法(PSO)的matlab運行程序~~謝謝大家啦!
%不知道你具體的問題是什麼,下面是一個最基本的pso演算法解決函數極值問題,如果是一些大型的問題,需要對速度、慣性常數、和自適應變異做進一步優化,希望對你有幫助
function y = fun(x)
y=-20*exp(-0.2*sqrt((x(1)^2+x(2)^2)/2))-exp((cos(2*pi*x(1))+cos(2*pi*x(2)))/2)+20+2.71289;
%下面是主程序
%% 清空環境
clc
clear
%% 參數初始化
%粒子群演算法中的兩個參數
c1 = 1.49445;
c2 = 1.49445;
maxgen=200; % 進化次數
sizepop=20; %種群規模
Vmax=1;%速度限制
Vmin=-1;
popmax=5;%種群限制
popmin=-5;
%% 產生初始粒子和速度
for i=1:sizepop
%隨機產生一個種群
pop(i,:)=5*rands(1,2); %初始種群
V(i,:)=rands(1,2); %初始化速度
%計算適應度
fitness(i)=fun(pop(i,:)); %染色體的適應度
end
%找最好的染色體
[bestfitness bestindex]=min(fitness);
zbest=pop(bestindex,:); %全局最佳
gbest=pop; %個體最佳
fitnessgbest=fitness; %個體最佳適應度值
fitnesszbest=bestfitness; %全局最佳適應度值
%% 迭代尋優
for i=1:maxgen
for j=1:sizepop
%速度更新
V(j,:) = V(j,:) + c1*rand*(gbest(j,:) - pop(j,:)) + c2*rand*(zbest - pop(j,:));
V(j,find(V(j,:)>Vmax))=Vmax;
V(j,find(V(j,:)<Vmin))=Vmin;
%種群更新
pop(j,:)=pop(j,:)+0.5*V(j,:);
pop(j,find(pop(j,:)>popmax))=popmax;
pop(j,find(pop(j,:)<popmin))=popmin;
%自適應變異(避免粒子群演算法陷入局部最優)
if rand>0.8
k=ceil(2*rand);%ceil朝正無窮大方向取整
pop(j,k)=rand;
end
%適應度值
fitness(j)=fun(pop(j,:));
%個體最優更新
if fitness(j) < fitnessgbest(j)
gbest(j,:) = pop(j,:);
fitnessgbest(j) = fitness(j);
end
%群體最優更新
if fitness(j) < fitnesszbest
zbest = pop(j,:);
fitnesszbest = fitness(j);
end
end
yy(i)=fitnesszbest;
end
%% 結果分析
plot(yy)
title(['適應度曲線 ' '終止代數=' num2str(maxgen)]);
xlabel('進化代數');ylabel('適應度');
㈢ 什麼是粒子群演算法
粒子群演算法,也稱粒子群優化演算法(Partical Swarm Optimization),縮寫為 PSO, 是近年來發展起來的一種新的進化演算法((Evolu2tionary Algorithm - EA)。PSO 演算法屬於進化演算法的一種,和遺傳演算法相似,它也是從隨機解出發,通過迭代尋找最優解,它也是通過適應度來評價解的品質,但它比遺傳演算法規則更為簡單,它沒有遺傳演算法的「交叉」(Crossover) 和「變異」(Mutation) 操作,它通過追隨當前搜索到的最優值來尋找全局最優。這種演算法以其實現容易、精度高、收斂快等優點引起了學術界的重視,並且在解決實際問題中展示了其優越性。設想這樣一個場景:一群鳥在隨機搜索食物。在這個區域里只有一塊食物。所有的鳥都不知道食物在那裡。但是他們知道當前的位置離食物還有多遠。那麼找到食物的最優策略是什麼呢。最簡單有效的就是搜尋目前離食物最近的鳥的周圍區域。 PSO從這種模型中得到啟示並用於解決優化問題。PSO中,每個優化問題的解都是搜索空間中的一隻鳥。我們稱之為「粒子」。所有的粒子都有一個由被優化的函數決定的適應值(fitness value),每個粒子還有一個速度決定他們飛翔的方向和距離。然後粒子們就追隨當前的最優粒子在解空間中搜索。 PSO 初始化為一群隨機粒子(隨機解)。然後通過迭代找到最優解。在每一次迭代中,粒子通過跟蹤兩個"極值"來更新自己。第一個就是粒子本身所找到的最優解,這個解叫做個體極值pBest。另一個極值是整個種群目前找到的最優解,這個極值是全局極值gBest。另外也可以不用整個種群而只是用其中一部分作為粒子的鄰居,那麼在所有鄰居中的極值就是局部極值。 粒子公式 在找到這兩個最優值時,粒子根據如下的公式來更新自己的速度和新的位置: v[] = w * v[] + c1 * rand() * (pbest[] - present[]) + c2 * rand() * (gbest[] - present[]) (a) present[] = persent[] + v[] (b) v[] 是粒子的速度, w是慣性權重,persent[] 是當前粒子的位置. pbest[] and gbest[] 如前定義 rand () 是介於(0, 1)之間的隨機數. c1, c2 是學習因子. 通常 c1 = c2 = 2. 程序的偽代碼如下 For each particle ____Initialize particle END Do ____For each particle ________Calculate fitness value ________If the fitness value is better than the best fitness value (pBest) in history ____________set current value as the new pBest ____End ____Choose the particle with the best fitness value of all the particles as the gBest ____For each particle ________Calculate particle velocity according equation (a) ________Update particle position according equation (b) ____End While maximum iterations or minimum error criteria is not attained 在每一維粒子的速度都會被限制在一個最大速度Vmax,如果某一維更新後的速度超過用戶設定的Vmax,那麼這一維的速度就被限定為Vmax
㈣ 有關粒子群演算法,蟻群演算法書籍
1
粒子群演算法及應用
作者
紀震,廖惠連,吳青華著
出版社
科學出版社
出版時間
2009-1-1
2
粒子群優化演算法
作者
李麗,牛奔著
出版社
冶金工業出版社
出版時間
2009-10-1
。。。
此外你還可以看看關於:近似演算法,優化演算法,智能演算法一類的書籍
㈤ 如何提高粒子群演算法收斂性 pdf
你也是做畢業設計的呀,我也是。咨詢老師好多次了都還是交不了。傷心
㈥ 如何用粒子群優化(PSO)演算法實現多目標優化
粒子群演算法,也稱粒子群優化演算法(ParticleSwarmOptimization),縮寫為PSO,是近年來發展起來的一種新的進化演算法(EvolutionaryAlgorithm-EA)。PSO演算法屬於進化演算法的一種,和模擬退火演算法相似,它也是從隨機解出發,通過迭代尋找最優解,它也是通過適應度來評價解的品質,但它比遺傳演算法規則更為簡單,它沒有遺傳演算法的「交叉」(Crossover)和「變異」(Mutation)操作,它通過追隨當前搜索到的最優值來尋找全局最優。這種演算法以其實現容易、精度高、收斂快等優點引起了學術界的重視,並且在解決實際問題中展示了其優越性。粒子群演算法是一種並行演算法。
㈦ 粒子群演算法的參數設置
從上面的例子我們可以看到應用PSO解決優化問題的過程中有兩個重要的步驟: 問題解的編碼和適應度函數 不需要像遺傳演算法一樣是二進制編碼(或者採用針對實數的遺傳操作.例如對於問題 f(x) = x1^2 + x2^2+x3^2 求解, 粒子可以直接編碼為 (x1, x2, x3), 而適應度函數就是f(x). 接著我們就可以利用前面的過程去尋優.這個尋優過程是一個疊代過程, 中止條件一般為設置為達到最大循環數或者最小錯誤
PSO中並沒有許多需要調節的參數,下面列出了這些參數以及經驗設置
粒子數: 一般取 20 – 40. 其實對於大部分的問題10個粒子已經足夠可以取得好的結果, 不過對於比較難的問題或者特定類別的問題, 粒子數可以取到100 或 200
粒子的長度: 這是由優化問題決定, 就是問題解的長度
粒子的范圍: 由優化問題決定,每一維可以設定不同的范圍
Vmax: 最大速度,決定粒子在一個循環中最大的移動距離,通常設定為粒子的范圍寬度,例如上面的例子里,粒子 (x1, x2, x3) x1 屬於 [-10, 10], 那麼 Vmax 的大小就是 20
學習因子: c1 和 c2 通常等於 2. 不過在文獻中也有其他的取值. 但是一般 c1 等於 c2 並且范圍在0和4之間
中止條件: 最大循環數以及最小錯誤要求. 例如, 在上面的神經網路訓練例子中, 最小錯誤可以設定為1個錯誤分類, 最大循環設定為2000, 這個中止條件由具體的問題確定.
全局PSO和局部PSO: 我們介紹了兩種版本的粒子群優化演算法: 全局版和局部版. 前者速度快不過有時會陷入局部最優. 後者收斂速度慢一點不過很難陷入局部最優. 在實際應用中, 可以先用全局PSO找到大致的結果,再用局部PSO進行搜索. 代碼來自2008年數學建模東北賽區B題, #includestdafx.h#include<math.h>#include<time.h>#include<iostream>#include<fstream>usingnamespacestd;intc1=2;//加速因子intc2=2;//加速因子doublew=1;//慣性權重doubleWmax=1;//最大慣性權重doubleWmin=0.6;//最小慣性權重intKmax=110;//迭代次數intGdsCnt;//物資總數intconstDim=10;//粒子維數intconstPNum=50;//粒子個數intGBIndex=0;//最優粒子索引doublea=0.6;//適應度調整因子doubleb=0.5;//適應度調整因子intXup[Dim];//粒子位置上界數組intXdown[Dim]=;//粒子位置下界數組intValue[Dim];//初始急需度數組intVmax[Dim];//最大速度數組classPARTICLE;//申明粒子節點voidCheck(PARTICLE&,int);//約束函數voidInput(ifstream&);//輸入變數voidInitial();//初始化相關變數doubleGetFit(PARTICLE&);//計算適應度voidCalculateFit();//計算適應度voidBirdsFly();//粒子飛翔voidRun(ofstream&,int=2000);//運行函數classPARTICLE//微粒類{public:intX[Dim];//微粒的坐標數組intXBest[Dim];//微粒的最好位置數組intV[Dim];//粒子速度數組doubleFit;//微粒適合度doubleFitBest;//微粒最好位置適合度};PARTICLEParr[PNum];//粒子數組intmain()//主函數{ofstreamoutf(out.txt);ifstreaminf(data.txt);//關聯輸入文件inf>>GdsCnt;//輸入物資總數Input(inf);Initial();Run(outf,100);system(pause);return0;}voidCheck(PARTICLE&p,intcount)//參數:p粒子對象,count物資數量{srand((unsigned)time(NULL));intsum=0;for(inti=0;i<Dim;i++){if(p.X>Xup)p.X=Xup;elseif(p.X<Xdown)p.X=Xdown;if(p.V>Vmax)p.V=Vmax;elseif(p.V<0)p.V=0;sum+=p.X;}while(sum>count){p.X[rand()%Dim]--;sum=0;for(inti=0;i<Dim;i++){if(p.X>Xup)p.X=Xup;elseif(p.X<Xdown)p.X=Xdown;if(p.V>Vmax)p.V=Vmax;elseif(p.V<0)p.V=0;sum+=p.X;}}voidInput(ifstream&inf)//以inf為對象輸入數據{for(inti=0;i<Dim;i++)inf>>Xup;for(inti=0;i<Dim;i++)inf>>Value;}voidInitial()//初始化數據{GBIndex=0;srand((unsigned)time(NULL));//初始化隨機函數發生器for(inti=0;i<Dim;i++)Vmax=(int)((Xup-Xdown)*0.035);for(inti=0;i{for(intj=0;j<Dim;j++){Parr.X[j]=(int)(rand()/(double)RAND_MAX*(Xup[j]-Xdown[j])-Xdown[j]+0.5);Parr.XBest[j]=Parr.X[j];Parr.V[j]=(int)(rand()/(double)RAND_MAX*(Vmax[j]-Vmax[j]/2));}Parr.Fit=GetFit(Parr);Parr.FitBest=Parr.Fit;if(Parr.Fit>Parr[GBIndex].Fit)GBIndex=i;}}doubleGetFit(PARTICLE&p)//計算對象適應度{doublesum=0;for(inti=0;i<Dim;i++)for(intj=1;j<=p.X;j++)sum+=(1-(j-1)*a/(Xup-b))*Value;returnsum;}voidCalculateFit()//計算數組內各粒子的適應度{for(inti=0;i{Parr.Fit=GetFit(Parr);}}voidBirdsFly()//粒子飛行尋找最優解{srand((unsigned)time(NULL));staticintk=10;w=Wmax-k*(Wmax-Wmin)/Kmax;k++;for(inti=0;i{for(intj=0;j<Dim;j++){Parr.V[j]=(int)(w*Parr.V[j]);Parr.V[j]+=(int)(c1*rand()/(double)RAND_MAX*(Parr.XBest[j]-Parr.X[j]);Parr.V[j]+=c2*rand()/(double)RAND_MAX*(Parr[GBIndex].XBest[j]-Parr.X[j]));}}Check(Parr,GdsCnt);for(intj=0;j<Dim;j++){Parr.X[j]+=Parr.V[j];Check(Parr,GdsCnt);}CalculateFit();for(inti=0;i{if(Parr.Fit>=Parr.FitBest){Parr.FitBest=Parr.Fit;for(intj=0;j<Dim;j++)Parr.XBest[j]=Parr.X[j];}}GBIndex=0;for(inti=0;i{if(Parr.FitBest>Parr[GBIndex].FitBest&&i!=GBIndex)GBIndex=i;}}voidRun(ofstream&outf,intnum)//令粒子以規定次數num飛行{for(inti=0;i<num;i++){BirdsFly();outf<<(i+1)<<ends<for(intj=0;j<Dim;j++)outf<outf<<endl;}cout<<Done!<<endl;}
㈧ 求粒子群演算法詳細公式,要有中文說明
找本優化和智能演算法書的PDF下載看看唄,讀博有這門課。
㈨ 粒子群演算法的優缺點
優點:PSO同遺傳演算法類似,是一種基於迭代的優化演算法。系統初始化為一組隨機解,通過迭代搜尋最優值。同遺傳演算法比較,PSO的優勢在於簡單容易實現,並且沒有許多參數需要調整。
缺點:在某些問題上性能並不是特別好。網路權重的編碼而且遺傳運算元的選擇有時比較麻煩。最近已經有一些利用PSO來代替反向傳播演算法來訓練神經網路的論文。
(9)粒子群演算法pdf擴展閱讀:
注意事項:
基礎粒子群演算法步驟較為簡單。粒子群優化演算法是由一組粒子在搜索空間中運動,受其自身的最佳過去位置pbest和整個群或近鄰的最佳過去位置gbest的影響。
對於有些改進演算法,在速度更新公式最後一項會加入一個隨機項,來平衡收斂速度與避免早熟。並且根據位置更新公式的特點,粒子群演算法更適合求解連續優化問題。