球體尋路演算法
① 游戲尋路演算法
1.四種演算法是DFS,BFS,Heuristic DFS, Heuristic BFS 這是建立在VC基礎上的
2.高數和線代是必須的,還牽涉到數分和運籌學的知識
② 三維點最短路徑尋路演算法求助
題目描述得不夠清楚啊,若干個點就是能作為中途點的那些點么?
如果所有的點都能作為中途點,當然走直徑,直接走A到B的直線。
否則,如果只有幾個,只能用啟發式或者廣度搜索吧,因為還有可能根本就沒有解。
如果中途點不多的話,可以直接從A出發,計算不超過L距離的那些中途點,然後以那些中途點為出發點,繼續計算不超過L距離的點(走過的點就不計入),直到遇到B為止。這種方法就是廣度搜索,在同一層距離最短的則為最短路徑。
如果中途點過多,無法這樣計算的話,限定范圍。
③ 游戲中的常用的尋路演算法有哪些
f(n)=g(n)+h(n) 從起始點到目的點的最佳評估值
– 每次都選擇f(n)值最小的結點作為下一個結點,
直到最終達到目的結點
– A*演算法的成功很大程度依賴於h(n)函數的構建
?;) = g(n? 在各種游戲中廣泛應用 Open列表和Closed列表
– Open列表
A*演算法
? h(n) = 從結點n到目的結點的耗費評估值,啟發函數
?,程序返回n
else 生成結點n的每一個後繼結點n;
foreach 結點n的後繼結點n;{
將n』的父結點設置為n
計算啟發式評估函數h(n『)值,評估從n『到node_goal的費用
計算g(n『) = g(n) + 從n』到n的開銷
計算f(n?? 在演算法啟動時,Closed列表為空 A* 演算法偽代碼初始化OPEN列表
初始化CLOSED列表
創建目的結點;稱為node_goal
創建起始結點;稱為node_start
將node_start添加到OPEN列表
while OPEN列表非空{
從OPEN列表中取出f(n)值最低的結點n
將結點n添加到CLOSED列表中
if 結點n與node_goal相等then 我們找到了路徑;)
if n『位於OPEN或者CLOSED列表and 現有f(n)較優then丟棄n』 ;) + h(n?? 包含我們還沒有處理到的結點
? g(n) = 從初始結點到結點n的耗費
?? 包含我們已經處理過的結點
,處理後繼n』
將結點n『從OPEN和CLOSED中刪除
添加結點n『到OPEN列表
}
}
return failure (我們已經搜索了所有的結點?? 啟發式搜索
– 在搜索中涉及到三個函數
??? 我們最開始將起始結點放入到Open列表中
– Closed列表
?
④ 誰能介紹一下JPS尋路演算法的思想
這是一個近年來發現的高效尋路演算法。不過有一個限制就是只能在規則的網格地圖上尋路,而且圖上的點或邊不能帶權重,也就是不能有復雜的地形,只支持平坦和障礙兩種地形。
其
思想就是跳過矩形平坦區域的大量對稱路徑,只尋找所謂的跳躍點,作為搜索的節點。這樣做的好處是裁剪了矩形區域內大量的節點,使open
list中的節點數相對較少。要知道,通常啟發式搜索演算法如A*,大量時間耗費在對open
list的操作上。實現得好的A*演算法會使用優先隊列,甚至HOT(heap on top)來對操作進行優化。但當open
list中的節點過多,這些操作還是會變得很昂貴。不過JPS有個缺點是每生成一個節點,也就是要找到一個跳躍點,相比較A*演算法,是比較昂貴的。幸好通
常來說,得到的收益更多些。所以,在適用的情況下,還是推薦使用JPS的。
具體的實現,主要有兩部分。第一部分,從open list中取一個最佳節點,然後從幾個特定方向展開搜索,把每個方向得到的跳躍點,加入open list里。第二部分,就是找到一個跳躍點。
對於起始點,可以向所有方向展開搜索。對於其他節點,要看父節點指向本節點的方向,向所有自然鄰居和被迫鄰居節點方向進行搜索。
例如下圖的例子,對於節點n和父節點p和障礙x,+是n的自然鄰居,也就是說從p到n到+是最佳路徑。如果x不是障礙,從p到n到-不是最佳路徑,因為從p到x到-最近。但是如果x是障礙,那麼從p到n到-就是最佳路徑了,所以這時候稱-為被迫鄰居。
- + +
x n +
p x -
以上是n和p對角的例子。還有種情況是n和p是直線:
x x -
p n +
x x -
搜
尋跳躍點是遞歸進行的。首先判斷一個節點是否是跳躍點。如果這個點有被迫鄰居,那麼這個節點就是跳躍點。第二種情況,如果這個節點是目的地節點那麼也當作
跳躍點。如果不是,那麼就遞歸地沿本來方向繼續搜尋下去。對於對角方向要額外多做兩步,即先對其相應的(左右兩個)直線方向進行搜索,如果找到跳躍點,就
把自身也當作跳躍點返回。如果直線沒找到,那麼就一樣繼續按對角方向遞歸尋找跳躍點,並返回那個跳躍點。
⑤ 夢幻西遊自動尋路的尋路演算法怎麼算
A*尋路演算法 A*(A-Star)演算法是一種靜態路網中求解最短路最有效的方法。
公式表示為: f(n)=g(n)+h(n),
其中f(n) 是節點n從初始點到目標點的估價函數,
g(n) 是在狀態空間中從初始節點到n節點的實際代價,
h(n)是從n到目標節點最佳路徑的估計代價。
保證找到最短路徑(最優解的)條件,關鍵在於估價函數h(n)的選取:
估價值h(n)<= n到目標節點的距離實際值,這種情況下,搜索的點數多,搜索范圍大,效率低。但能得到最優解。
如果 估價值>實際值, 搜索的點數少,搜索范圍小,效率高,但不能保證得到最優解。
估價值與實際值越接近,估價函數取得就越好。
例如對於幾何路網來說,可以取兩節點間歐幾理德距離(直線距離)做為估價值,即f=g(n)+sqrt((dx-nx)*(dx-nx)+(dy-ny)*(dy-ny));這樣估價函數f在g值一定的情況下,會或多或少的受估價值h的制約,節點距目標點近,h值小,f值相對就小,能保證最短路的搜索向終點的方向進行。明顯優於Dijstra演算法的毫無無方向的向四周搜索。
conditions of heuristic
Optimistic (must be less than or equal to the real cost)
As close to the real cost as possible
主要搜索過程:
創建兩個表,OPEN表保存所有已生成而未考察的節點,CLOSED表中記錄已訪問過的節點。
遍歷當前節點的各個節點,將n節點放入CLOSE中,取n節點的子節點X,->算X的估價值->
While(OPEN!=NULL)
{
從OPEN表中取估價值f最小的節點n;
if(n節點==目標節點) break;
else
{
if(X in OPEN) 比較兩個X的估價值f //注意是同一個節點的兩個不同路徑的估價值
if( X的估價值小於OPEN表的估價值 )
更新OPEN表中的估價值; //取最小路徑的估價值
if(X in CLOSE) 比較兩個X的估價值 //注意是同一個節點的兩個不同路徑的估價值
if( X的估價值小於CLOSE表的估價值 )
更新CLOSE表中的估價值; 把X節點放入OPEN //取最小路徑的估價值
if(X not in both)
求X的估價值;
並將X插入OPEN表中; //還沒有排序
}
將n節點插入CLOSE表中;
按照估價值將OPEN表中的節點排序; //實際上是比較OPEN表內節點f的大小,從最小路徑的節點向下進行。
啟發式搜索其實有很多的演算法,比如:局部擇優搜索法、最好優先搜索法等等。當然A*也是。這些演算法都使用了啟發函數,但在具體的選取最佳搜索節點時的策略不同。象局部擇優搜索法,就是在搜索的過程中選取「最佳節點」後舍棄其他的兄弟節點,父親節點,而一直得搜索下去。這種搜索的結果很明顯,由於舍棄了其他的節點,可能也把最好的
節點都舍棄了,因為求解的最佳節點只是在該階段的最佳並不一定是全局的最佳。最好優先就聰明多了,他在搜索時,便沒有舍棄節點(除非該節點是死節點),在每一步的估價
中都把當前的節點和以前的節點的估價值比較得到一個「最佳的節點」。這樣可以有效的防止「最佳節點」的丟失。那麼A*演算法又是一種什麼樣的演算法呢?其實A*演算法也是一種最
好優先的演算法。只不過要加上一些約束條件罷了。由於在一些問題求解時,我們希望能夠求解出狀態空間搜索的最短路徑,也就是用最快的方法求解問題,A*就是干這種事情的!
我們先下個定義,如果一個估價函數可以找出最短的路徑,我們稱之為可採納性。A*演算法是一個可採納的最好優先演算法。A*演算法的估價函數可表示為:
f'(n) = g'(n) + h'(n)
這里,f'(n)是估價函數,g'(n)是起點到終點的最短路徑值,h'(n)是n到目標的最斷路經的啟發值。由於這個f'(n)其實是無法預先知道的,所以我們用前面的估價函數f(n)做
近似。g(n)代替g'(n),但 g(n)>=g'(n)才可(大多數情況下都是滿足的,可以不用考慮),h(n)代替h'(n),但h(n)<=h'(n)才可(這一點特別的重要)。可以證明應用這樣的估價
函數是可以找到最短路徑的,也就是可採納的。我們說應用這種估價函數的最好優先演算法就是A*演算法。哈。你懂了嗎?肯定沒懂。接著看。
舉一個例子,其實廣度優先演算法就是A*演算法的特例。其中g(n)是節點所在的層數,h(n)=0,這種h(n)肯定小於h'(n),所以由前述可知廣度優先演算法是一種可採納的。實際也是
。當然它是一種最臭的A*演算法。
再說一個問題,就是有關h(n)啟發函數的信息性。h(n)的信息性通俗點說其實就是在估計一個節點的值時的約束條件,如果信息越多或約束條件越多則排除的節點就越多,估價函
數越好或說這個演算法越好。這就是為什麼廣度優先演算法的那麼臭的原因了,誰叫它的h(n)=0,一點啟發信息都沒有。但在游戲開發中由於實時性的問題,h(n)的信息越多,它的計
算量就越大,耗費的時間就越多。就應該適當的減小h(n)的信息,即減小約束條件。但演算法的准確性就差了,這里就有一個平衡的問題。
}
⑥ RMXP尋路演算法
#==============================================================================
# ■ Find_Path
#------------------------------------------------------------------------------
# 尋路演算法--完整滑鼠系統(四方向)專用版
# By whbm
#==============================================================================
class Find_Path
#--------------------------------------------------------------------------
def initialize #初始化
@open_list = []
@close_lise = []
@path = []
end #結束初始化
#--------------------------------------------------------------------------
def fp_passable?(x, y, d, tr_x = -2, tr_y = -2) #開始判定通行
return false if (tr_x == @unable_xa or
tr_x == @unable_xb or
tr_y == @unable_ya or
tr_y == @unable_yb)
if $game_player.passable?(x, y, d)
return true
else
return false
end
end #結束判定通行
#--------------------------------------------------------------------------
def get_g(now_point) #開始計算G值
d = now_point[2]
return 0 if d == 5
father_point = get_father_point(now_point)
g = father_point[3] + 10
return g
end #結束計算G值
#--------------------------------------------------------------------------
def get_h(now_point) #開始計算H值
now_x = now_point[0]
now_y = now_point[1]
#print @trg_x,now_x,@trg_y,now_y
h = (@trg_x - now_x).abs + (@trg_y - now_y).abs
return h * 10
end #結束計算H值
#--------------------------------------------------------------------------
def get_f(now_point) #開始計算F值
f = now_point[3] + now_point[4]
return f
end #結束計算F值
#--------------------------------------------------------------------------
def get_point(x, y) #取已知坐標點
if @open_list.size != 0
@open_list.each do |point|
if point[0] == x and point[1] == y
return point
break
end
end
end
if @close_list.size != 0
@close_list.each do |point|
if point[0] == x and point[1] == y
return point
break
end
end
end
end #結束取已知坐標點
#--------------------------------------------------------------------------
def get_father_point(now_point) #取已知點的父節點
d = now_point[2]
return now_point if d == 5
x = now_point[0] + (d == 6 ? 1 : (d == 4 ? -1 : 0))
y = now_point[1] + (d == 2 ? 1 : (d == 8 ? -1 : 0))
return get_point(x, y)
end #結束取已知點的父節點
#--------------------------------------------------------------------------
def new_point(x, y, d) #開始建立新節點
#print x,y,d
point = [x, y, d]
point.push get_g(point)
point.push get_h(point)
point.push get_f(point)
return point
end #結束建立新節點
#--------------------------------------------------------------------------
def get_direction(self_x, self_y, trg_x, trg_y)
if trg_x > self_x
if trg_y - self_y > - ( trg_x - self_x ) and
trg_y - self_y < ( trg_x - self_x )
return 6
end
if trg_y - self_y > ( trg_x - self_x )
return 2
end
if trg_y - self_y < - ( trg_x - self_x )
return 8
end
end
if trg_x < self_x
if trg_y - self_y > - ( self_x - trg_x ) and
trg_y - self_y < ( self_x - trg_x )
return 4
end
if trg_y - self_y > ( self_x - trg_x )
return 2
end
if trg_y - self_y < - ( self_x - trg_x )
return 8
end
end
end
#--------------------------------------------------------------------------
def get_d_x_y(x, y, d)
d_x = x + (d == 6 ? 1 : (d == 4 ? -1 : 0))
d_y = y + (d == 2 ? 1 : (d == 8 ? -1 : 0))
return d_x, d_y
end
#--------------------------------------------------------------------------
def find_short_path_other(self_x, self_y, trg_x, trg_y,
real_self_x, real_self_y, real_trg_x, real_trg_y)
@self_x = self_x
@self_y = self_y
@now_x = self_x
@now_y = self_y
@trg_x = trg_x
@trg_y = trg_y
@path = []
direction = get_direction(real_self_x, real_self_y, real_trg_x, real_trg_y)
@now_trg_x, @now_trg_y = get_d_x_y(@self_x, @self_y, direction)
while fp_passable?(@now_x, @now_y, direction)
@path.push direction
@now_x = @now_trg_x
@now_y = @now_trg_y
@now_trg_x, @now_trg_y = get_d_x_y(@now_x, @now_y, direction)
end
return @path
end
#--------------------------------------------------------------------------
def find_short_path(self_x, self_y, trg_x, trg_y,
real_self_x, real_self_y, real_trg_x, real_trg_y) #開始搜索路徑
return find_short_path_other(self_x, self_y, trg_x, trg_y,
real_self_x, real_self_y, real_trg_x, real_trg_y) if not
(fp_passable?(trg_x, trg_y + 1, 8) or
fp_passable?(trg_x + 1, trg_y, 4) or
fp_passable?(trg_x - 1, trg_y, 6) or
fp_passable?(trg_x, trg_y - 1, 2)) and @goal_type != 1
#根據屏幕限定搜索麵積..加速
@unable_xa = $game_map.display_x / 128 - 1
@unable_ya = $game_map.display_y / 128 - 1
@unable_xb = $game_map.display_x / 128 + 20
@unable_yb = $game_map.display_y / 128 + 20
@self_x = self_x
@self_y = self_y
@now_x = self_x
@now_y = self_y
@trg_x = trg_x
@trg_y = trg_y
@open_list = []
@close_list = []
#准備搜索
#print @self_x,@self_y
@now_point = new_point(@self_x, @self_y, 5) #令起始點為當前點
@open_list.push @now_point #將當前點加入關閉列表
#開始搜索
begin
loop do
check_trg = check_around_point(@now_point)
if check_trg == true
@path = get_path
break
end
@now_point = get_lowest_f_point
if @now_point == [] or @now_point == nil
@path = []
break
end
end
rescue Hangup
retry
end
return @path
end #結束搜索路徑
#--------------------------------------------------------------------------
def find_player_short_path(trg_x, trg_y,
real_trg_x, real_trg_y) #尋找角色的最短路徑
self_x = $game_player.x
self_y = $game_player.y
real_self_x = $game_player.screen_x
real_self_y = $game_player.screen_y
@goal_type, event = $game_map.check_event_custom_exist(real_trg_x, real_trg_y)
if @goal_type == 1
trg_x = event.x
trg_y = event.y
end
return find_short_path(self_x, self_y, trg_x, trg_y,
real_self_x, real_self_y, real_trg_x, real_trg_y)
end #結束角色的尋找路徑
#--------------------------------------------------------------------------
def get_path #取得最終的路徑
path = []
now_point = @open_list[@open_list.size - 1]
path.push(10 - now_point[2])
last_point = now_point
loop do
now_point = get_father_point(now_point)
break if now_point[2] == 5
path.push(10 - now_point[2])
end
return path.reverse
end #結束取得最終的路徑
#--------------------------------------------------------------------------
def get_lowest_f_point #開始取得最低F值的點
if @open_list == []
return []
end
last_lowest_f_point = @open_list[0]
@open_list.each do |point|
last_lowest_f_point = point if point[5] < last_lowest_f_point[5]
end
return last_lowest_f_point
end #結束取得最低F值點
#--------------------------------------------------------------------------
def check_around_point(point) #開始檢查已知點的八方節點
for d in [2, 4, 6, 8]
x = point[0] + (d == 6 ? 1 : (d == 4 ? -1 : 0))
y = point[1] + (d == 2 ? 1 : (d == 8 ? -1 : 0))
if in_close_list?(x, y) #在關閉列表中
next
elsif in_open_list?(x, y) #在開啟列表中
get_new_g_point = new_point(x, y, 10 - d)
get_last_g_point = get_point(x, y)
if get_new_g_point[3] >= get_last_g_point[3]
next
else
#如果改變父節點是新G值更小則確定改變
@open_list[@open_list.index(get_last_g_point)] = get_new_g_point
end
else
if fp_passable?(point[0], point[1], d, x, y)
# 如果不在開啟列表中、且不在關閉列表中、且通行則添加它到新八周節點
@open_list.push new_point(x, y, 10 - d)
#如果將目標點添加到了開啟列表中就返回true
return true if x == @trg_x and y == @trg_y
return true if @goal_type == 1 and ([1, -1].include?(x - @trg_x) and y - @trg_y == 0) or ([1, -1].include?(y - @trg_y) and x - @trg_x == 0)
end
end
end
#此刻沒有找到目標點並將當前點加入關閉列表並在開啟列表中刪除
@close_list.push point
@open_list.delete(point)
#此刻沒找到目標點並返回false
return false
end #結束計算已知點的八方節點
#--------------------------------------------------------------------------
def in_open_list?(x, y) #開始檢查謀點是否在開啟列表中
@open_list.each do |point|
return true if point[0] == x and point[1] == y
end
return false
end #結束檢查謀點是否在開啟列表中
#--------------------------------------------------------------------------
def in_close_list?(x, y) #開始檢查謀點是否在關閉列表中
@close_list.each do |point|
return true if point[0] == x and point[1] == y
end
return false
end #結束檢查謀點是否在關閉列表中
#--------------------------------------------------------------------------
end
⑦ 求繞過多個圓形障礙的尋路演算法
一個簡單的演算法就是窮舉
一個點由上下左右四個方向不斷向另一個點靠近,
處理三種情況,兩點直連,需要一次折線,需要兩次折線
⑧ 有關A* 尋路演算法。 看了這個演算法 大致都明白。就是有點不大清楚。
1. B的G值是指從起點A開始,到達該點的最短距離,和B在不在最短路徑上沒有關系。
2. 不是遍歷所有路徑,而是所有點。對於m*n的矩陣, 遍歷所有點的復雜度是m*n(多項式復雜度),而遍歷所有路徑的復雜度是4的(m*n)次冪(每個點都有4個可能的方向)。從冪指數復雜度降低到多項式復雜度,這就是A*演算法的意義所在。
3. 最優路徑是要從終點一步步倒退回來。比如終點的G值是k,那麼最多需要4*k次查找,依然是多項式復雜度。但多數問題(對於純演算法題來說)只是需要知道到達終點的步驟,很少要你找出固定路徑的。
⑨ 星際爭霸2的尋路演算法思路是怎樣的
首先地圖整體開始前,會用多層可達矩陣演算法,算出路徑關鍵點
2,創建關鍵節點可達矩陣
3,再每個兵當前位置對關鍵節點進行路徑計算
這樣可以最小化資源佔用就可以完成路徑計算了,高數的離散數學,挺容易解的
⑩ A星尋路演算法和Unity自帶的尋路相比有什麼優勢
在理解Navigation的時候,首先要明確兩個知識點:
AStar:AStar是路點尋路演算法中的一種,同時AStar不屬於貪婪演算法,貪婪演算法適合動態規劃,尋找局部最優解,不保證最優解。AStar是靜態網格中求解最短路最有效的方法。也是耗時的演算法,不宜尋路頻繁的場合。一般來說適合需求精確的場合。
性能和內存佔用率都還行,和啟發式的搜索一樣,能夠根據改變網格密度、網格耗散來進行調整精確度。
A Star一般使用場景:
策略游戲的策略搜索
方塊格子游戲中的格子尋路
Navigation:網格尋路演算法,嚴格意義上它屬於」拐角點演算法」,效率是比較高的,但是不保證最優解演算法。Navigation相對來說消耗內存更大,性能的話還不錯。
Navigation一般使用場景:
游戲場景的怪物尋路
動態規避障礙
它們二者事件的實現方式和原理都不同。
AStar的話,