linux性能優化
① linux系統優化的12個步驟是什麼
Linux系統優化的12個步驟:
1、登錄系統。
2、禁止SSH遠程。
3、時間同步。
4、配置yum更新源。
5、關閉selinux及iptables。
6、調整文件描述符數量。
7、定時自動清理/var/spool/clientmquene/目錄垃圾文件。
8、精簡開機啟動服務。
9、Linux內核參數優化/etc/sysctl.conf,執行sysct -p生效。
10、更改字元集,防止亂碼問題出現。
11、鎖定關鍵系統文件。
12、清空/etc/issue,去除系統及內核版本登陸前的屏幕顯示。
② 如何優化蘋果電腦Linux系統
Linux使用第二擴展文件系統 (ext2),它以一種完全不同的方式處理文件存儲。Linux沒有Windows系統中發現的那種問題,這使得許多人認為磁碟碎片化根本不是一個問題。但是,這是不正確的。
所有的文件系統隨著時間的推移都趨向於碎片化。Linux文件系統減少了碎片化,但是並沒有消除。由於它不經常出現,所以對於一個單用戶的工作站來說,可能根本不是問題。然而在繁忙的伺服器中,隨著時間的過去,文件碎片化將降低硬碟性能,硬碟性能只有從硬碟讀出或寫入數據時才能注意到。下面是優化 Linux系統硬碟性能的一些具體措施。
一、清理磁碟
這種方法看上去很簡單:清理磁碟驅動器,刪除不需要的文件,清除所有需要被保存但將不被使用的文件。如果可能的話,清除多餘的目錄,並減少子目錄的數目。這些建議似乎顯而易見,但是你會驚訝地發現,每個磁碟上確實積累了非常多的垃圾。釋放磁碟空間可以幫助系統更好地工作。
二、整理磁碟碎片
Linux系統上的磁碟碎片整理程序與Windows 98或Windows NT系統中的磁碟碎片整理程序不同。Windows 98引入FAT 32文件系統,雖然運行Windows 98不必轉換為FAT 32文件系統。Windows可以被設置為使用FAT或一個叫NTFS的增強文件系統。所有這些文件系統以本質上相同的方式處理文件存儲。
Linux最好的整理磁碟碎片的方法是做一個完全的備份,重新格式化分區,然後從備份恢復文件。當文件被存儲時,它們將被寫到連續的塊中,它們不會碎片化。這是一個大工作,可能對於像/usr之類不經常改變的程序分區是不必要的,但是它可以在一個多用戶系統的/home分區產生奇跡。它所花費的時間與Windows NT伺服器磁碟碎片整理花費的時間大致上相同。
如果硬碟性能仍不令人滿意,還有許多其它的步驟可以考慮,但是任何包含升級或購買新設備的硬體解決方案可能會是昂貴的。
三、從IDE升級到SCSI
如果你的硬碟是一個IDE驅動器,可以通過升級到SCSI驅動器獲得更好的整體性能。因為IDE控制器必須訪問CPU,CPU和磁碟密集型操作可能變得非常緩慢。SCSI控制器不用通過CPU處理讀寫。當IDE驅動器在讀或寫時,用戶可能會因為CPU周期被IDE驅動器佔用而抱怨系統的緩慢。
獲取更快的控制器和磁碟驅動器
標準的SCSI控制器不能比標準的IDE控制器更快地讀寫數據,但是一些非常快的逗UltraWide地SCSI控制器能夠使讀寫速度有一個真正的飛躍。
EIDE和UDMA控制器是非常快的IDE控制器。新的UDMA控制器能夠接近SCSI控制器的速度。UDMA控制器的頂級速度是猝發速度,但持續傳輸的速度明顯慢得多。IDE控制器包括UDMA,是嵌入在驅動器本身中的。不需要購買一個控制器,只要購買一個驅動器,它就包含了控制器,可以獲得 UDMA性能。
磁碟驅動器經常忽視的一個方面是磁碟本身的速度。磁碟的速度以rpm為單位給出,它代表每分鍾旋轉多少次。rpm越大,磁碟速度也越快。如果你有這方面的預算,大多數伺服器系統廠商可提供7500rpm甚至10000rpm SCSI磁碟。
③ 一般優化linux的內核,需要優化什麼參數
作為高性能WEB伺服器,只調整Nginx本身的參數是不行的,因為Nginx服務依賴於高性能的操作系統。
以下為常見的幾個Linux內核參數優化方法。
net.ipv4.tcp_max_tw_buckets
net.ipv4.tcp_tw_recycle = 1
net.ipv4.tcp_tw_reuse = 1
net.ipv4.tcp_syncookies = 1
net.ipv4.tcp_max_syn_backlog
net.ipv4.tcp_syn_retries
net.ipv4.tcp_synack_retries
net.ipv4.ip_local_port_range
net.ipv4.tcp_fin_timeout
net.ipv4.tcp_keepalive_time
net.ipv4.tcp_keepalive_intvl
net.ipv4.tcp_keepalive_probes
對於tcp連接,服務端和客戶端通信完後狀態變為timewait,假如某台伺服器非常忙,連接數特別多的話,那麼這個timewait數量就會越來越大。
畢竟它也是會佔用一定的資源,所以應該有一個最大值,當超過這個值,系統就會刪除最早的連接,這樣始終保持在一個數量級。
這個數值就是由net.ipv4.tcp_max_tw_buckets這個參數來決定的。
CentOS7系統,你可以使用sysctl -a |grep tw_buckets來查看它的值,默認為32768,
你可以適當把它調低,比如調整到8000,畢竟這個狀態的連接太多也是會消耗資源的。
但你不要把它調到幾十、幾百這樣,因為這種狀態的tcp連接也是有用的,
如果同樣的客戶端再次和服務端通信,就不用再次建立新的連接了,用這個舊的通道,省時省力。
該參數的作用是快速回收timewait狀態的連接。上面雖然提到系統會自動刪除掉timewait狀態的連接,但如果把這樣的連接重新利用起來豈不是更好。
所以該參數設置為1就可以讓timewait狀態的連接快速回收,它需要和下面的參數配合一起使用。
該參數設置為1,將timewait狀態的連接重新用於新的TCP連接,要結合上面的參數一起使用。
tcp三次握手中,客戶端向服務端發起syn請求,服務端收到後,也會向客戶端發起syn請求同時連帶ack確認,
假如客戶端發送請求後直接斷開和服務端的連接,不接收服務端發起的這個請求,服務端會重試多次,
這個重試的過程會持續一段時間(通常高於30s),當這種狀態的連接數量非常大時,伺服器會消耗很大的資源,從而造成癱瘓,
正常的連接進不來,這種惡意的半連接行為其實叫做syn flood攻擊。
設置為1,是開啟SYN Cookies,開啟後可以避免發生上述的syn flood攻擊。
開啟該參數後,服務端接收客戶端的ack後,再向客戶端發送ack+syn之前會要求client在短時間內回應一個序號,
如果客戶端不能提供序號或者提供的序號不對則認為該客戶端不合法,於是不會發ack+syn給客戶端,更涉及不到重試。
該參數定義系統能接受的最大半連接狀態的tcp連接數。客戶端向服務端發送了syn包,服務端收到後,會記錄一下,
該參數決定最多能記錄幾個這樣的連接。在CentOS7,默認是256,當有syn flood攻擊時,這個數值太小則很容易導致伺服器癱瘓,
實際上此時伺服器並沒有消耗太多資源(cpu、內存等),所以可以適當調大它,比如調整到30000。
該參數適用於客戶端,它定義發起syn的最大重試次數,默認為6,建議改為2。
該參數適用於服務端,它定義發起syn+ack的最大重試次數,默認為5,建議改為2,可以適當預防syn flood攻擊。
該參數定義埠范圍,系統默認保留埠為1024及以下,以上部分為自定義埠。這個參數適用於客戶端,
當客戶端和服務端建立連接時,比如說訪問服務端的80埠,客戶端隨機開啟了一個埠和服務端發起連接,
這個參數定義隨機埠的范圍。默認為32768 61000,建議調整為1025 61000。
tcp連接的狀態中,客戶端上有一個是FIN-WAIT-2狀態,它是狀態變遷為timewait前一個狀態。
該參數定義不屬於任何進程的該連接狀態的超時時間,默認值為60,建議調整為6。
tcp連接狀態里,有一個是established狀態,只有在這個狀態下,客戶端和服務端才能通信。正常情況下,當通信完畢,
客戶端或服務端會告訴對方要關閉連接,此時狀態就會變為timewait,如果客戶端沒有告訴服務端,
並且服務端也沒有告訴客戶端關閉的話(例如,客戶端那邊斷網了),此時需要該參數來判定。
比如客戶端已經斷網了,但服務端上本次連接的狀態依然是established,服務端為了確認客戶端是否斷網,
就需要每隔一段時間去發一個探測包去確認一下看看對方是否在線。這個時間就由該參數決定。它的默認值為7200秒,建議設置為30秒。
該參數和上面的參數是一起的,服務端在規定時間內發起了探測,查看客戶端是否在線,如果客戶端並沒有確認,
此時服務端還不能認定為對方不在線,而是要嘗試多次。該參數定義重新發送探測的時間,即第一次發現對方有問題後,過多久再次發起探測。
默認值為75秒,可以改為3秒。
第10和第11個參數規定了何時發起探測和探測失敗後再過多久再發起探測,但並沒有定義一共探測幾次才算結束。
該參數定義發起探測的包的數量。默認為9,建議設置2。
設置和範例
在Linux下調整內核參數,可以直接編輯配置文件/etc/sysctl.conf,然後執行sysctl -p命令生效
④ linux系統優化。我用的是elementary os 系統。電腦運行好慢。怎樣讓系統變快。給個命令或優化軟體
該命令可以顯示關於系統各種資源之間相關性能的簡要信息,這里我們主要用它來看CPU的一個負載情況。
下面是vmstat命令在某個系統的輸出結果:
[root@node1 ~]# vmstat 2 3
procs -----------memory---------- ---swap-- -----io---- --system-- -----cpu------
r b swpd free buff cache si so bi bo in cs us sy id wa st
0 0 0 162240 8304 67032 0 0 13 21 1007 23 0 1 98 0 0
0 0 0 162240 8304 67032 0 0 1 0 1010 20 0 1 100 0 0
0 0 0 162240 8304 67032 0 0 1 1 1009 18 0 1 99 0 0
對上面每項的輸出解釋如下:
? procs
? r列表示運行和等待cpu時間片的進程數,這個值如果長期大於系統CPU的個數,說明CPU不足,需要增加CPU。
? b列表示在等待資源的進程數,比如正在等待I/O、或者內存交換等。
? memory
? swpd列表示切換到內存交換區的內存數量(以k為單位)。如果swpd的值不為0,或者比較大,只要si、so的值長期為0,這種情況下一般不用擔心,不會影響系統性能。
? free列表示當前空閑的物理內存數量(以k為單位)
? buff列表示buffers cache的內存數量,一般對塊設備的讀寫才需要緩沖。
? cache列表示page cached的內存數量,一般作為文件系統cached,頻繁訪問的文件都會被cached,如果cache值較大,說明cached的文件數較多,如果此時IO中bi比較小,說明文件系統效率比較好。
? swap
? si列表示由磁碟調入內存,也就是內存進入內存交換區的數量。
? so列表示由內存調入磁碟,也就是內存交換區進入內存的數量。
一般情況下,si、so的值都為0,如果si、so的值長期不為0,則表示系統內存不足。需要增加系統內存。
? IO項顯示磁碟讀寫狀況
? Bi列表示從塊設備讀入數據的總量(即讀磁碟)(每秒kb)。
? Bo列表示寫入到塊設備的數據總量(即寫磁碟)(每秒kb)
這里我們設置的bi+bo參考值為1000,如果超過1000,而且wa值較大,則表示系統磁碟IO有問題,應該考慮提高磁碟的讀寫性能。
? system 顯示採集間隔內發生的中斷數
? in列表示在某一時間間隔中觀測到的每秒設備中斷數。
? cs列表示每秒產生的上下文切換次數。
上面這2個值越大,會看到由內核消耗的CPU時間會越多。
? CPU項顯示了CPU的使用狀態,此列是我們關注的重點。
? us列顯示了用戶進程消耗的CPU 時間百分比。us的值比較高時,說明用戶進程消耗的cpu時間多,但是如果長期大於50%,就需要考慮優化程序或演算法。
? sy列顯示了內核進程消耗的CPU時間百分比。Sy的值較高時,說明內核消耗的CPU資源很多。
根據經驗,us+sy的參考值為80%,如果us+sy大於 80%說明可能存在CPU資源不足。
? id 列顯示了CPU處在空閑狀態的時間百分比。
? wa列顯示了IO等待所佔用的CPU時間百分比。wa值越高,說明IO等待越嚴重,根據經驗,wa的參考值為20%,如果wa超過20%,說明IO等待嚴重,引起IO等待的原因可能是磁碟大量隨機讀寫造成的,也可能是磁碟或者磁碟控制器的帶寬瓶頸造成的(主要是塊操作)。
綜上所述,在對CPU的評估中,需要重點注意的是procs項r列的值和CPU項中us、sy和id列的值。
1.2 sar命令
檢查CPU性能的第二個工具是sar,sar功能很強大,可以對系統的每個方面進行單獨的統計,但是使用sar命令會增加系統開銷,不過這些開銷是可以評估的,對系統的統計結果不會有很大影響。
下面是sar命令對某個系統的CPU統計輸出:
[root@webserver ~]# sar -u 3 5
Linux 2.6.9-42.ELsmp (webserver) 11/28/2008 _i686_ (8 CPU)
11:41:24 AM CPU %user %nice %system %iowait %steal %idle
11:41:27 AM all 0.88 0.00 0.29 0.00 0.00 98.83
11:41:30 AM all 0.13 0.00 0.17 0.21 0.00 99.50
11:41:33 AM all 0.04 0.00 0.04 0.00 0.00 99.92
11:41:36 AM all 0.29 0.00 0.13 0.00 0.00 99.58
11:41:39 AM all 0.38 0.00 0.17 0.04 0.00 99.41
Average: all 0.34 0.00 0.16 0.05 0.00 99.45
對上面每項的輸出解釋如下:
? %user列顯示了用戶進程消耗的CPU 時間百分比。
? %nice列顯示了運行正常進程所消耗的CPU 時間百分比。
? %system列顯示了系統進程消耗的CPU時間百分比。
? %iowait列顯示了IO等待所佔用的CPU時間百分比
? %steal列顯示了在內存相對緊張的環境下pagein強制對不同的頁面進行的steal操作 。
? %idle列顯示了CPU處在空閑狀態的時間百分比。
這個輸出是對系統整體CPU使用狀況的統計,每項的輸出都非常直觀,並且最後一行Average是個匯總行,是上面統計信息的一個平均值。
需要注意的一點是:第一行的統計信息中包含了sar本身的統計消耗,所以%user列的值會偏高一點,不過,這不會對統計結果產生多大影響。
在一個多CPU的系統中,如果程序使用了單線程,會出現這么一個現象,CPU的整體使用率不高,但是系統應用卻響應緩慢,這可能是由於程序使用單線程的原因,單線程只使用一個CPU,導致這個CPU佔用率為100%,無法處理其它請求,而其它的CPU卻閑置,這就導致 了整體CPU使用率不高,而應用緩慢 現象的發生 。
針對這個問題,可以對系統的每個CPU分開查詢,統計每個CPU的使用情況:
[root@webserver ~]# sar -P 0 3 5
Linux 2.6.9-42.ELsmp (webserver) 11/29/2008 _i686_ (8 CPU)
06:29:33 PM CPU %user %nice %system %iowait %steal %idle
06:29:36 PM 0 3.00 0.00 0.33 0.00 0.00 96.67
06:29:39 PM 0 0.67 0.00 0.33 0.00 0.00 99.00
06:29:42 PM 0 0.00 0.00 0.33 0.00 0.00 99.67
06:29:45 PM 0 0.67 0.00 0.33 0.00 0.00 99.00
06:29:48 PM 0 1.00 0.00 0.33 0.33 0.00 98.34
Average: 0 1.07 0.00 0.33 0.07 0.00 98.53
這個輸出是對系統的第一顆CPU的信息統計,需要注意的是,sar中對CPU的計數是從0開始的,因此,「sar -P 0 3 5」表示對系統的第一顆CPU進行信息統計,「sar -P 4 3 5」則表示對系統的第五顆CPU進行統計。依次類推。可以看出,上面的系統有八顆CPU。
1.3 iostat命令
iostat指令主要用於統計磁碟IO狀態,但是也能查看CPU的使用信息,它的局限性是只能顯示系統所有CPU的平均信息,看下面的一個輸出:
[root@webserver ~]# iostat -c
Linux 2.6.9-42.ELsmp (webserver) 11/29/2008 _i686_ (8 CPU)
avg-cpu: %user %nice %system %iowait %steal %idle
2.52 0.00 0.30 0.24 0.00 96.96
在這里,使用了「-c」參數,只顯示系統CPU的統計信息,輸出中每項代表的含義與sar命令的輸出項完全相同,不再詳述。
1.4 uptime
命令
uptime是監控系統性能最常用的一個命令,主要用來統計系統當前的運行狀況,輸出的信息依次為:系統現在的時間、系統從上次開機到現在運行了多長時間、系統目前有多少登陸用戶、系統在一分鍾內、五分鍾內、十五分鍾內的平均負載。看下面的一個輸出:
[root@webserver ~]# uptime
18:52:11 up 27 days, 19:44, 2 users, load average: 0.12, 0.08, 0.08
這里需要注意的是load average這個輸出值,這三個值的大小一般不能大於系統CPU的個數,例如,本輸出中系統有8個CPU,如果load average的三個值長期大於8時,說明CPU很繁忙,負載很高,可能會影響系統性能,但是偶爾大於8時,倒不用擔心,一般不會影響系統性能。相反,如果load average的輸出值小於CPU的個數,則表示CPU還有空閑的時間片,比如本例中的輸出,CPU是非常空閑的。
1.5
本節小結
上面介紹了檢查CPU使用狀況的四個命令,通過這些命令需要了解的是:系統CPU是否出現性能瓶頸,也就是說,以上這些命令只能查看CPU是否繁忙,負載是否過大,但是無法知道CPU為何負載過大,因而,判斷系統CPU出現問題後,要結合top、ps等命令進一步檢查是由那些進程導致CPU負載過大的。引起CPU資源緊缺的原因可能是應用程序不合理造成的,也可能是硬體資源匱乏引起的,所以,要具體問題具體分析,或者優化應用程序,或者增加系統CPU資源。
2 內存性能評估
內存的管理和優化是系統性能優化的一個重要部分,內存資源的充足與否直接影響應用系統的使用性能,在進行內存優化之前,一定要熟悉linux的內存管理機制,這一點我們在前面的章節已經有深入講述,本節的重點是如何通過系統命令監控linux系統的內存使用狀況。
2.1 free 命令
free是監控linux內存使用狀況最常用的指令,看下面的一個輸出:
[root@webserver ~]# free -m
total used free shared buffers cached
Mem: 8111 7185 925 0 243 6299
-/+ buffers/cache: 643 7468
Swap: 8189 0 8189
「free –m」表示以M為單位查看內存使用情況,在這個輸出中,重點關注的應該是free列與cached列的輸出值,由輸出可知,此系統共8G內存,系統空閑內存還有925M,其中,Buffer Cache佔用了243M,Page Cache佔用了6299M,由此可知系統緩存了很多的文件和目錄,而對於應用程序來說,可以使用的內存還有7468M,當然這個7468M包含了Buffer Cache和Page Cache的值。在swap項可以看出,交換分區還未使用。所以從應用的角度來說,此系統內存資源還非常充足。
一般有這樣一個經驗公式:應用程序可用內存/系統物理內存>70%時,表示系統內存資源非常充足,不影響系統性能,應用程序可用內存/系統物理內存<20%時,表示系統內存資源緊缺,需要增加系統內存,20%<應用程序可用內存/系統物理內存<70%時,表示系統內存資源基本能滿足應用需求,暫時不影響系統性能。
free命令還可以適時的監控內存的使用狀況,使用「-s」參數可以在指定的時間段內不間斷的監控內存的使用情況:
[root@webserver ~]# free -b -s 5
total used free shared buffers cached
Mem: 8505901056 7528706048 977195008 0 260112384 6601158656
-/+ buffers/cache: 667435008 7838466048
Swap: 8587149312 163840 8586985472
total used free shared buffers cached
Mem: 8505901056 7526936576 978964480 0 260128768 6601142272
-/+ buffers/cache: 665665536 7840235520
Swap: 8587149312 163840 8586985472
total used free shared buffers cached
Mem: 8505901056 7523987456 981913600 0 260141056 6601129984
-/+ buffers/cache: 662716416 7843184640
Swap: 8587149312 163840 8586985472
其中,「-b」表示以千位元組(也就是1024位元組為單位)來顯示內存使用情況。
⑤ linux系統性能怎麼優化
linux系統性能怎麼優化
一、前提
我們可以在文章的開始就列出一個列表,列出可能影響Linux操作系統性能的一些調優參數,但這樣做其實並沒有什麼價值。因為性能調優是一個非常困難的任務,它要求對硬體、操作系統、和應用都有著相當深入的了解。如果性能調優非常簡單的話,那些我們要列出的調優參數早就寫入硬體的微碼或者操作系統中了,我們就沒有必要再繼續讀這篇文章了。正如下圖所示,伺服器的性能受到很多因素的影響。
當面對一個使用單獨IDE硬碟的,有20000用戶的資料庫伺服器時,即使我們使用數周時間去調整I/O子系統也是徒勞無功的,通常一個新的驅動或者應用程序的一個更新(如SQL優化)卻可以使這個伺服器的性能得到明顯的提升。正如我們前面提到的,不要忘記系統的性能是受多方面因素影響的。理解操作系統管理系統資源的方法將幫助我們在面對問題時更好的判斷應該對哪個子系統進行調整。
二、Linux的CPU調度
任何計算機的基本功能都十分簡單,那就是計算。為了實現計算的功能就必須有一個方法去管理計算資源、處理器和計算任務(也被叫做線程或者進程)。非常感謝Ingo Molnar,他為Linux內核帶來了O(1)CPU調度器,區別於舊有的O(n)調度器,新的調度器是動態的,可以支持負載均衡,並以恆定的速度進行操作。
新調度器的可擴展性非常好,無論進程數量或者處理器數量,並且調度器本身的系統開銷更少。新調取器的演算法使用兩個優先順序隊列。
引用
・活動運行隊列
・過期運行隊列
調度器的一個重要目標是根據優先順序許可權有效地為進程分配CPU 時間片,當分配完成後它被列在CPU的運行隊列中,除了 CPU 的運行隊列之外,還有一個過期運行隊列。當活動運行隊列中的一個任務用光自己的時間片之後,它就被移動到過期運行隊列中。在移動過程中,會對其時間片重新進行計算。如果活動運行隊列中已經沒有某個給定優先順序的任務了,那麼指向活動運行隊列和過期運行隊列的指針就會交換,這樣就可以讓過期優先順序列表變成活動優先順序的列表。通常互動式進程(相對與實時進程而言)都有一個較高的優先順序,它佔有更長的時間片,比低優先順序的進程獲得更多的計算時間,但通過調度器自身的調整並不會使低優先順序的進程完全被餓死。新調度器的優勢是顯著的改變Linux內核的可擴展性,使新內核可以更好的處理一些有大量進程、大量處理器組成的企業級應用。新的O(1)調度器包含仔2.6內核中,但是也向下兼容2.4內核。
新調度器另外一個重要的優勢是體現在對NUMA(non-uniform memory architecture)和SMP(symmetric multithreading processors)的支持上,例如INTEL@的超線程技術。
改進的NUMA支持保證了負載均衡不會發生在CECs或者NUMA節點之間,除非發生一個節點的超出負載限度。
三、Linux的內存架構
今天我們面對選擇32位操作系統還是64位操作系統的情況。對企業級用戶它們之間最大的區別是64位操作系統可以支持大於4GB的內存定址。從性能角度來講,我們需要了解32位和64位操作系統都是如何進行物理內存和虛擬內存的映射的。
在上面圖示中我們可以看到64位和32位Linux內核在定址上有著顯著的不同。
在32位架構中,比如IA-32,Linux內核可以直接定址的范圍只有物理內存的第一個GB(如果去掉保留部分還剩下896MB),訪問內存必須被映射到這小於1GB的所謂ZONE_NORMAL空間中,這個操作是由應用程序完成的。但是分配在ZONE_HIGHMEM中的內存頁將導致性能的降低。
在另一方面,64位架構比如x86-64(也稱作EM64T或者AMD64)。ZONE_NORMAL空間將擴展到64GB或者128GB(實際上可以更多,但是這個數值受到操作系統本身支持內存容量的限制)。正如我們看到的,使用64位操作系統我們排除了因ZONE_HIGHMEM部分內存對性能的影響的情況。
實際中,在32位架構下,由於上面所描述的內存定址問題,對於大內存,高負載應用,會導致死機或嚴重緩慢等問題。雖然使用hugemen核心可緩解,但採取x86_64架構是最佳的解決辦法。
四、虛擬內存管理
因為操作系統將內存都映射為虛擬內存,所以操作系統的物理內存結構對用戶和應用來說通常都是不可見的。如果想要理解Linux系統內存的調優,我們必須了解Linux的虛擬內存機制。應用程序並不分配物理內存,而是向Linux內核請求一部分映射為虛擬內存的內存空間。如下圖所示虛擬內存並不一定是映射物理內存中的空間,如果應用程序有一個大容量的請求,也可能會被映射到在磁碟子系統中的swap空間中。
另外要提到的是,通常應用程序不直接將數據寫到磁碟子系統中,而是寫入緩存和緩沖區中。Bdflush守護進程將定時將緩存或者緩沖區中的數據寫到硬碟上。
Linux內核處理數據寫入磁碟子系統和管理磁碟緩存是緊密聯系在一起的。相對於其他的操作系統都是在內存中分配指定的一部分作為磁碟緩存,Linux處理內存更加有效,默認情況下虛擬內存管理器分配所有可用內存空間作為磁碟緩存,這就是為什麼有時我們觀察一個配置有數G內存的Linux系統可用內存只有20MB的原因。
同時Linux使用swap空間的機制也是相當高效率的,如上圖所示虛擬內存空間是由物理內存和磁碟子系統中的swap空間共同組成的。如果虛擬內存管理器發現一個已經分配完成的內存分頁已經長時間沒有被調用,它將把這部分內存分頁移到swap空間中。經常我們會發現一些守護進程,比如getty,會隨系統啟動但是卻很少會被應用到。這時為了釋放昂貴的主內存資源,系統會將這部分內存分頁移動到swap空間中。上述就是Linux使用swap空間的機制,當swap分區使用超過50%時,並不意味著物理內存的使用已經達到瓶頸了,swap空間只是Linux內核更好的使用系統資源的一種方法。
簡單理解:Swap usage只表示了Linux管理內存的有效性。對識別內存瓶頸來說,Swap In/Out才是一個比較又意義的依據,如果Swap In/Out的值長期保持在每秒200到300個頁面通常就表示系統可能存在內存的瓶頸。下面的事例是好的狀態:
引用
# vmstat
procs ———–memory————- —swap– —–io—- –system– —-cpu—-
r b swpd free buff cache si so bi bo in cs us sy id wa
1 0 5696 6904 28192 50496 0 0 88 117 61 29 11 8 80 1
五、模塊化的I/O調度器
就象我們知道的Linux2.6內核為我們帶來了很多新的特性,這其中就包括了新的I/O調度機制。舊的2.4內核使用一個單一的I/O調度器,2.6 內核為我們提供了四個可選擇的I/O調度器。因為Linux系統應用在很廣闊的范圍里,不同的應用對I/O設備和負載的要求都不相同,例如一個筆記本電腦和一個10000用戶的資料庫伺服器對I/O的要求肯定有著很大的區別。
引用
(1).Anticipatory
anticipatory I/O調度器創建假設一個塊設備只有一個物理的查找磁頭(例如一個單獨的SATA硬碟),正如anticipatory調度器名字一樣,anticipatory調度器使用「anticipatory」的演算法寫入硬碟一個比較大的數據流代替寫入多個隨機的小的數據流,這樣有可能導致寫 I/O操作的一些延時。這個調度器適用於通常的一些應用,比如大部分的個人電腦。
(2).Complete Fair Queuing (CFQ)
Complete Fair Queuing(CFQ)調度器是Red Flag DC Server 5使用的標准演算法。CFQ調度器使用QoS策略為系統內的所有任務分配相同的帶寬。CFQ調度器適用於有大量計算進程的多用戶系統。它試圖避免進程被餓死和實現了比較低的延遲。
(3).Deadline
deadline調度器是使用deadline演算法的輪詢的調度器,提供對I/O子系統接近實時的操作,deadline調度器提供了很小的延遲和維持一個很好的磁碟吞吐量。如果使用deadline演算法請確保進程資源分配不會出現問題。
(4).NOOP
NOOP調度器是一個簡化的調度程序它只作最基本的合並與排序。與桌面系統的關系不是很大,主要用在一些特殊的軟體與硬體環境下,這些軟體與硬體一般都擁有自己的調度機制對內核支持的要求很小,這很適合一些嵌入式系統環境。作為桌面用戶我們一般不會選擇它。
六、網路子系統
新的網路中斷緩和(NAPI)對網路子系統帶來了改變,提高了大流量網路的性能。Linux內核在處理網路堆棧時,相比降低系統佔用率和高吞吐量更關注可靠性和低延遲。所以在某些情況下,Linux建立一個防火牆或者文件、列印、資料庫等企業級應用的性能可能會低於相同配置的Windows伺服器。
在傳統的處理網路封包的方式中,如下圖藍色箭頭所描述的,一個乙太網封包到達網卡介面後,如果MAC地址相符合會被送到網卡的緩沖區中。網卡然後將封包移到操作系統內核的網路緩沖區中並且對CPU發出一個硬中斷,CPU會處理這個封包到相應的網路堆棧中,可能是一個TCP埠或者Apache應用中。
這是一個處理網路封包的簡單的流程,但從中我們可以看到這個處理方式的缺點。正如我們看到的,每次適合網路封包到達網路介面都將對CPU發出一個硬中斷信號,中斷CPU正在處理的其他任務,導致切換動作和對CPU緩存的操作。你可能認為當只有少量的網路封包到達網卡的情況下這並不是個問題,但是千兆網路和現代的應用將帶來每秒鍾成千上萬的網路數據,這就有可能對性能造成不良的影響。
正是因為這個情況,NAPI在處理網路通訊的時候引入了計數機制。對第一個封包,NAPI以傳統的方式進行處理,但是對後面的封包,網卡引入了POLL 的輪詢機制:如果一個封包在網卡DMA環的緩存中,就不再為這個封包申請新的中斷,直到最後一個封包被處理或者緩沖區被耗盡。這樣就有效的減少了因為過多的中斷CPU對系統性能的影響。同時,NAPI通過創建可以被多處理器執行的軟中斷改善了系統的可擴展性。NAPI將為大量的企業級多處理器平台帶來幫助,它要求一個啟用NAPI的驅動程序。在今天很多驅動程序默認沒有啟用NAPI,這就為我們調優網路子系統的性能提供了更廣闊的空間。
七、理解Linux調優參數
因為Linux是一個開源操作系統,所以又大量可用的性能監測工具。對這些工具的選擇取決於你的個人喜好和對數據細節的要求。所有的性能監測工具都是按照同樣的規則來工作的,所以無論你使用哪種監測工具都需要理解這些參數。下面列出了一些重要的參數,有效的理解它們是很有用處的。
(1)處理器參數
引用
・CPU utilization
這是一個很簡單的參數,它直觀的描述了每個CPU的利用率。在xSeries架構中,如果CPU的利用率長時間的超過80%,就可能是出現了處理器的瓶頸。
・Runable processes
這個值描述了正在准備被執行的進程,在一個持續時間里這個值不應該超過物理CPU數量的10倍,否則CPU方面就可能存在瓶頸。
・Blocked
描述了那些因為等待I/O操作結束而不能被執行的進程,Blocked可能指出你正面臨I/O瓶頸。
・User time
描述了處理用戶進程的百分比,包括nice time。如果User time的值很高,說明系統性能用在處理實際的工作。
・System time
描述了CPU花費在處理內核操作包括IRQ和軟體中斷上面的百分比。如果system time很高說明系統可能存在網路或者驅動堆棧方面的瓶頸。一個系統通常只花費很少的時間去處理內核的操作。
・Idle time
描述了CPU空閑的百分比。
・Nice time
描述了CPU花費在處理re-nicing進程的百分比。
・Context switch
系統中線程之間進行交換的數量。
・Waiting
CPU花費在等待I/O操作上的總時間,與blocked相似,一個系統不應該花費太多的時間在等待I/O操作上,否則你應該進一步檢測I/O子系統是否存在瓶頸。
・Interrupts
Interrupts 值包括硬Interrupts和軟Interrupts,硬Interrupts會對系統性能帶來更多的不利影響。高的Interrupts值指出系統可能存在一個軟體的瓶頸,可能是內核或者驅動程序。注意Interrupts值中包括CPU時鍾導致的中斷(現代的xServer系統每秒1000個 Interrupts值)。
(2)內存參數
引用
・Free memory
相比其他操作系統,Linux空閑內存的值不應該做為一個性能參考的重要指標,因為就像我們之前提到過的,Linux內核會分配大量沒有被使用的內存作為文件系統的緩存,所以這個值通常都比較小。
・Swap usage
這 個值描述了已經被使用的swap空間。Swap usage只表示了Linux管理內存的有效性。對識別內存瓶頸來說,Swap In/Out才是一個比較又意義的依據,如果Swap In/Out的值長期保持在每秒200到300個頁面通常就表示系統可能存在內存的瓶頸。
・Buffer and cache
這個值描述了為文件系統和塊設備分配的緩存。在Red Flag DC Server 5版本中,你可以通過修改/proc/sys/vm中的page_cache_tuning來調整空閑內存中作為緩存的數量。
・Slabs
描述了內核使用的內存空間,注意內核的頁面是不能被交換到磁碟上的。
・Active versus inactive memory
提供了關於系統內存的active內存信息,Inactive內存是被kswapd守護進程交換到磁碟上的空間。
(3)網路參數
引用
・Packets received and sent
這個參數表示了一個指定網卡接收和發送的數據包的數量。
・Bytes received and sent
這個參數表示了一個指定網卡接收和發送的數據包的位元組數。
・Collisions per second
這個值提供了發生在指定網卡上的網路沖突的數量。持續的出現這個值代表在網路架構上出現了瓶頸,而不是在伺服器端出現的問題。在正常配置的網路中沖突是非常少見的,除非用戶的網路環境都是由hub組成。
・Packets dropped
這個值表示了被內核丟掉的數據包數量,可能是因為防火牆或者是網路緩存的缺乏。
・Overruns
Overruns表達了超出網路介面緩存的次數,這個參數應該和packets dropped值聯繫到一起來判斷是否存在在網路緩存或者網路隊列過長方面的瓶頸。
・Errors 這個值記錄了標志為失敗的幀的數量。這個可能由錯誤的網路配置或者部分網線損壞導致,在銅口千兆乙太網環境中部分網線的損害是影響性能的一個重要因素。
(4)塊設備參數
引用
・Iowait
CPU等待I/O操作所花費的時間。這個值持續很高通常可能是I/O瓶頸所導致的。
・Average queue length
I/O請求的數量,通常一個磁碟隊列值為2到3為最佳情況,更高的值說明系統可能存在I/O瓶頸。
・Average wait
響應一個I/O操作的平均時間。Average wait包括實際I/O操作的時間和在I/O隊列里等待的時間。
・Transfers per second
描述每秒執行多少次I/O操作(包括讀和寫)。Transfers per second的值與kBytes per second結合起來可以幫助你估計系統的平均傳輸塊大小,這個傳輸塊大小通常和磁碟子系統的條帶化大小相符合可以獲得最好的性能。
・Blocks read/write per second
這個值表達了每秒讀寫的blocks數量,在2.6內核中blocks是1024bytes,在早些的內核版本中blocks可以是不同的大小,從512bytes到4kb。
・Kilobytes per second read/write
按照kb為單位表示讀寫塊設備的實際數據的數量。
⑥ Linux性能監控工具、調優工具
除了保證程序的正確性以外,在項目開發中往往還關心性能和穩定性。我們往往要對內核、應用程序或整個系統進行性能優化。在性能優化中常用的手段如下:
使用top、vmstat、iostat、sysctl等常用工具
top命令用於顯示處理器的活動狀況。在預設情況下,顯示佔用CPU最多的任務,並且每隔5s做一次刷新;vmstat命令用於報告關於內核線程、虛擬內存、磁碟、陷阱和CPU活動的統計信息;iostat命令用於分析各個磁碟的傳輸閑忙狀況;netstat是用來檢測網路信息的工具; sar用於收集、報告或者保存系統活動信息,其中,sar用於顯示數據,sar1和sar2用於收集和保存數據
sysctl是一個可用於改變正在運行中的Linux系統的介面。用sysctl 可以讀取幾白個以上的系統變數,如用sysctl—a可讀取所有變數。
sysctl的實現原理是:所有的內核參數在/proc/sys中形成一個樹狀結構,sysctl系統調用的內核函數是sys_sysctl,匹配項目後,最後的讀寫在do_sysctl_strategy中完成。
2.使用高級分析手段,如OProfile、gprof
OProfile可以幫助用戶識別諸如模塊的佔用時間、循環的展開、高速緩存的使用率低、低效的類型轉換和冗餘操作、錯誤預測轉移等問題。它收集有關處理器事件的信息,其中包括TLB的故障、停機、存儲器訪問以及緩存命中和未命中的指令的攫取數量。OProfile支持兩種采樣方式:基於事件的采樣(Event Based)和基於時間的采樣(Time Based)。基於事件的采樣是OProfile只記錄特定事件(比如L2緩存未命中)的發生次數,當達到用戶設定的定值時Oprofile就記錄一下(采一個樣)。這種方式需要CPU內部有性能計數器(Performace Counter))。基於時間的采樣是OProfile藉助OS時鍾中斷的機制,在每個時鍾中斷,OProfile都會記錄一次(采一次樣)。引入它的目的在於,提供對沒有性能計數器的CPU的支持,其精度相對於基於事件的采樣要低,因為要藉助OS時鍾中斷的支持,對於禁用中斷的代碼,OProfile不能對其進行分析。
⑦ 為什麼優化linux網路性能
linux系統性能怎麼優化
一、前提
我們可以在文章的開始就列出一個列表,列出可能影響Linux操作系統性能的一些調優參數,但這樣做其實並沒有什麼價值。因為性能調優是一個非常困難的任務,它要求對硬體、操作系統、和應用都有著相當深入的了解。如果性能調優非常簡單的話,那些我們要列出的調優參數早就寫入硬體的微碼或者操作系統中了,我們就沒有必要再繼續讀這篇文章了。正如下圖所示,伺服器的性能受到很多因素的影響。
當面對一個使用單獨IDE硬碟的,有20000用戶的資料庫伺服器時,即使我們使用數周時間去調整I/O子系統也是徒勞無功的,通常一個新的驅動或者應用程序的一個更新(如SQL優化)卻可以使這個伺服器的性能得到明顯的提升。正如我們前面提到的,不要忘記系統的性能是受多方面因素影響的。理解操作系統管理系統資源的方法將幫助我們在面對問題時更好的判斷應該對哪個子系統進行調整。
二、Linux的CPU調度
任何計算機的基本功能都十分簡單,那就是計算。為了實現計算的功能就必須有一個方法去管理計算資源、處理器和計算任務(也被叫做線程或者進程)。非常感謝Ingo Molnar,他為Linux內核帶來了O(1)CPU調度器,區別於舊有的O(n)調度器,新的調度器是動態的,可以支持負載均衡,並以恆定的速度進行操作。
新調度器的可擴展性非常好,無論進程數量或者處理器數量,並且調度器本身的系統開銷更少。新調取器的演算法使用兩個優先順序隊列。
⑧ Linux 性能調優都有哪幾種方法
Disabling daemons (關閉 daemons)。
Shutting down the GUI (關閉 GUI)。
Changing kernel parameters (改變內核參數)。
Kernel parameters (內核參數)。
Tuning the processor subsystem (處理器子系統調優)。
Tuning the memory subsystem (內存子系統調優)。
Tuning the file system (文件系統子系統調優)。
Tuning the network subsystem(網路子系統調優)。
⑨ 《Linux性能優化》pdf下載在線閱讀全文,求百度網盤雲資源
《Linux性能優化》網路網盤pdf最新全集下載:
鏈接: https://pan..com/s/1yN8xafx4FqDHsam-kz_zvw
簡介:本書將幫助你一步步地解決這個難題,告訴你如何發現並修復性能問題本書第1章介紹了查找性能問題的基本方法,之後用若干章分別介紹了各種工具,涉及的性能問題包括系統CPU、用戶CPU、內存、網路10以及磁碟10等多個方面。在介紹各種工具時,除了介紹工具的度量對象、使用方法和相關參數選項之外,還附上了一些例子演示其用法。如果一個工具可以用於多種問題,那麼將會在相關的每一章中都看到它。第10章到第12章給出了綜合性的、面向實際問題的案例,有助於讀者在自己解決問題時選擇和使用這些工具。
⑩ 《Linux性能優化大師》epub下載在線閱讀,求百度網盤雲資源
《Linux性能優化大師》(趙永剛)電子書網盤下載免費在線閱讀
資源鏈接:
鏈接:https://pan..com/s/19NEM66cv_SJa8t9-vS_ZKA
書名:Linux性能優化大師
作者:趙永剛
豆瓣評分:6.1
出版社:電子工業出版社
出版年份:2015-8-1
頁數:296
內容簡介:
性能調優有時被稱為「黑色藝術」,因為有時有效地調整一個系統,要求具有更深層次的知識,且需要了解一個系統的硬體和軟體組成,以及系統之間的相互作用。性能優化是針對特定環境來定製系統的配置過程,或者是讓某個特定的應用程序得到更好的響應時間或吞吐量的過程。
《Linux性能優化大師》首先對Linux 操作系統進行了深入剖析,並對最常用的企業監控工具Benchmark 及其他監控工具進行了詳細的介紹,此外分析了系統中識別和分析瓶頸的過程,最後闡述如何使用性能衡量工具,以及如何對系統的4 大子系統進行調整,使系統以最優狀態應對不同的工作環境。
《Linux性能優化大師》適合廣大Linux 用戶深入學習,並適合計算機專業本科、碩士等專業的學生學習參考。
作者簡介:
趙永剛,2006-2008年期間主要從事思科網路研究,並在2008年獲得思科CCNA 與CCNP國際認證。2009至今一直在從事Linux系統的研究,並在2009年和2010年分別獲得紅帽RHCE和RHCA國際認證。