lz77源碼
1. .7z後綴的文件用什麼打開
工具材料
winrar軟體
方法如下
1、首先打開「winrar」軟體,在下拉菜單中找到「設置」選項。
2. 電腦izip是什麼軟體
是一款解壓縮軟體。
數據壓縮包含了非常多的軟體和硬體技術,這些技術各不相同,但是大多數壓縮軟體都是基於LZ77、LZ88演算法並加以修正而成,而LZ77是字典壓縮的起源。
一個文本文件是由一些單片語成,而且必定有重復現象發生。
例如我們這里經常出現的「壓縮軟體」一詞,壓縮的原理就是在文件的頭部做一個類似字典的東西,把「壓縮軟體」這個詞放在「字典」中,並為這個詞指定一個占較少位元組數的編碼,而文章中的「壓縮軟體」一詞均用此編碼代替,以達到壓縮的目的。
ZIP文件格式是一種數據壓縮和文檔儲存的文件格式,原名Deflate,發明者為菲爾·卡茨(Phil Katz),他於1989年1月公布了該格式的資料。ZIP通常使用後綴名「.zip」,它的MIME格式為application/zip。
當前,ZIP格式屬於幾種主流的壓縮格式之一,其競爭者包括RAR格式以及開放源碼的7z格式。從性能上比較,RAR及7z格式較ZIP格式壓縮率較高,而7-Zip由於提供了免費的壓縮工具而逐漸在更多的領域得到應用。
Microsoft從Windows ME操作系統開始內置對zip格式的支持,即使用戶的計算機上沒有安裝解壓縮軟體,也能打開和製作zip格式的壓縮文件,OS X和流行的Linux操作系統也對zip格式提供了類似的支持。
因此如果在網路上傳播和分發文件,zip格式往往是最常用的選擇。
3. .NET Framework問題 ,會的幫幫忙。。。
1..............................
泛型是程序設計語言的一種特性。允許程序員在強類型程序設計語言中編寫代碼時定義一些可變部份,那些部份在使用前必須作出指明。各種程序設計語言和其編譯器、運行環境對泛型的支持均不一樣。將類型參數化以達到代碼復用提高軟體開發工作效率的一種數據類型。泛型類是引用類型,是堆對象,主要是引入了類型參數這個概念。
泛型類和泛型方法同時具備可重用性、類型安全和效率,這是非泛型類和非泛型方法無法具備的。
2.............................
JIT(just-in-time compilation)指計算機領域里,即時編譯也被成為動態翻譯,是一種通過在運行時將位元組碼翻譯為機器碼,從而改善位元組碼編譯語言性能的技術。即時編譯前期的兩個運行時理論是位元組碼編譯和動態編譯。
在編譯為位元組碼的系統如 Limb 編程語言,Smalltalk, UCSD P-System, Perl, GNU CLISP, 和 Java 的早期版本中, 源代碼被翻譯為一種中間表示即位元組碼。 位元組碼不是任何特定計算機的機器碼, 它可以在多種計算機體系中移植。位元組碼被解釋著運行在虛擬機里。
動態編譯環境是一種在執行時使用編譯器的編譯環境。 例如, 多數 Common Lisp 系統有一個編譯函數,他可以編譯在運行時創建的函數。
在即時編譯環境下, 位元組碼的編譯是第一步, 它將源代碼遞歸到可移植和可優化的中間表示。位元組碼被部署到目標系統。 當執行代碼時,運行時環境的編譯器將位元組碼翻譯為本地機器碼。 基於每個文件或每個函數:函數僅僅在他們要被執行時才會被編譯。
目標是要組合利用本地和位元組碼編譯的多種優勢:多數重量級的任務如源代碼解析和基本性能的優化在編譯時處理,將位元組碼編譯為機器碼比起從源代碼編譯為機器碼要快得多。部署位元組碼是可移植的,而機器碼只限於特定的系統結構。從位元組碼到機器碼編譯器的實現更容易,因為大部分工作已經在實現位元組碼編譯器時完成。
3.........................
提供了可以跨平台的可能性。
4.........................
DeflateStream 類
注意:此類在 .NET Framework 2.0 版中是新增的。
提供用於使用 Deflate 演算法壓縮和解壓縮流的方法和屬性。
此類表示 Deflate 演算法,這是無損壓縮和解壓縮文件的行業標准演算法。它結合了 LZ77 演算法和霍夫曼編碼。只能使用以前綁定的中間存儲量來產生或使用數據,即使對於任意長度的、按順序出現的輸入數據流也是如此。這種格式可以通過不涉及專利使用權的方式輕松實現。有關更多信息,請參見 RFC 1951「DEFLATE Compressed Data Format Specification version 1.3」(Deflate 壓縮數據格式規范版本 1.3)。此類不能用於壓縮大於 4 GB 的文件。
GZipStream 類
注意:此類在 .NET Framework 2.0 版中是新增的。
提供用於壓縮和解壓縮流的方法和屬性。
此類表示 GZip 數據格式,它使用無損壓縮和解壓縮文件的行業標准演算法。這種格式包括一個檢測數據損壞的循環冗餘校驗值。GZip 數據格式使用的演算法與 DeflateStream 類的演算法相同,但它可以擴展以使用其他壓縮格式。這種格式可以通過不涉及專利使用權的方式輕松實現。gzip 的格式可以從 RFC 1952「GZIP file format specification 4.3(GZIP 文件格式規范 4.3)GZIP file format specification 4.3(GZIP 文件格式規范 4.3)」中獲得。此類不能用於壓縮大於 4 GB 的文件。
5..............................
委託是一種在對象里保存方法引用的類型,同時也是一種類型安全的函數指針。
給你舉個例子:
//聲明一個委託,這里的NewDelegate()可以理解為是之後用來取方法的一個類型。
delegate void NewDelegate();
//下面定義的a,b兩種方法,你可以理解為NewDelegate這個類型的兩個實例。
public void a(){};
public void b(){};
public void main()
{
NewDelegate dgt1=new NewDelegate(a);
NewDelegate dgt2=new NewDelegate(b);
//dgt1指向方法a,dgt2指向方法b。也就是說一個方法的返回值和參數類型數量與聲明的委託
//相符時,就可以用一個委託來調用這個方法。而這個方法的名稱作為參數傳遞給實例化的那個委託
}
事件是一種特殊的委託,為什麼這么說呢?
用反編譯工具反編譯.net framework即可發現,事件的定義(這里只是舉其中一種事件的定義,事件的參數在類庫中定義有區別),如下:
public delegate void EventHandler(object sender, EventArgs e);
而常見的各種控制項的Click事件是如何定義的呢?
public event EventHandler Click;
說明 Click事件是一個委託
而我們常見的一個Button控制項添加一個事件是怎麼做的呢?
PageLoad里:Button1.Click+=new EventHandler(Button1_Click);
定義Button1的事件 protected Button1_Click(object sender,EventArgs e){}
如你所見,這是一個很典型的委託調用。
6............................................
信息 :說明
程序集名稱:指定程序集名稱的文本字元串。
版本號:主版本號和次版本號,以及修訂號和內部版本號。公共語言運行庫使用這些編號來強制實施版本策略。
區域性:有關該程序集支持的區域性或語言的信息。此信息只應用於將一個程序集指定為包含特定區域性或特定語言信息的附屬程序集。(具有區域性信息的程序集被自動假定為附屬程序集。)
強名稱信息:如果已經為程序集提供了一個強名稱,則為來自發行者的公鑰。
程序集中所有文件的列表: 在程序集中包含的每一文件的散列及文件名。請注意,構成程序集的所有文件所在的目錄必須是包含該程序集清單的文件所在的目錄。
類型引用信息: 運行庫用來將類型引用映射到包含其聲明和實現的文件的信息。該信息用於從程序集導出的類型。
有關被引用程序集的信息: 該程序集靜態引用的其他程序集的列表。如果依賴的程序集具有強名稱,則每一引用均包括該依賴程序集的名稱、程序集元數據(版本、區域性、操作系統等)和公鑰。
通過在代碼中使用程序集屬性,您可以添加或更改程序集清單中的一些信息。您可以更改版本信息和信息性屬性,包括商標、版權、產品、公司和信息性版本。
........
4. 手機圖片是什麼格式
通常為JPG/JPEG、PNG、GIF格式。
1、JPG/JPEG
最適合於使用真彩色或平滑過渡式的照片和圖片。該格式使用有損壓縮來減少圖片的大小,因此用戶將看到隨著文件的減小,圖片的質量也降低了,當圖片轉換成.jpg文件時,圖片中的透明區域將轉化為純色。
2、PNG
可移植的網路圖形格式適合於任何類型,任何顏色深度的圖片。也可以用PNG來保存帶調色板的圖片。該格式使用無損壓縮來減少圖片的大小,同時保留圖片中的透明區域,所以文件也略大。
3、GIF
GIF,圖形交換格式。最適合用於線條圖的剪貼畫以及使用大塊純色的圖片。該格式使用無損壓縮來減少圖片的大小,當用戶要保存圖片為.GIF時,可以自行決定是否保存透明區域或者轉換為純色。同時,通過多幅圖片的轉換,GIF格式還可以保存動畫文件。
(4)lz77源碼擴展閱讀:
JPEG格式由於可以提供有損壓縮,因此壓縮比可以達到其他傳統壓縮演算法無法比擬的程度。JPEG的壓縮模式有以下幾種:
1、順序式編碼(Sequential Encoding):一次將圖像由左到右、由上到下順序處理。
2、遞增式編碼(Progressive Encoding):當圖像傳輸的時間較長時,可將圖像分數次處理,以從模糊到清晰的方式來傳送圖像(效果類似GIF在網路上的傳輸)。
3、無有損編碼(Lossless Encoding)。
4、階梯式編碼(Hierarchical Encoding):圖像以數種解析度來壓縮,其目的是為了讓具有高解析度的圖像也可以在較低解析度的設備上顯示。Independent JPEG Group所提供的源碼上,有jpegtran程序,就提供了優化Huffman,轉成漸進式,鏡射,旋轉這些無損耗轉換。
5. 7zip與zip rar的區別在哪
都是壓縮格式,我也比較喜歡用7ZIP格式,因為壓縮效率高,但就是速度慢了些,可能是7ZIP的詞典豐富、演算法強大。
7-Zip 是一款 開源 軟體。大多數源代碼都基於 GNU LGPL 許可協議下發布。AES 代碼基於 BSD 許可下發布。unRAR 代碼基於兩種許可:GNU LGPL 和 unRAR 限制許可。
您可以在使用任何計算機上使用 7-Zip ,包括用在商業用途的計算機,不對 7-Zip 進行捐贈或支付並不影響您的使用。但是您可以通過 捐贈 的方式來支持 7-Zip 今後的發展。
7-Zip 主要特徵
更新了演算法來加大 7z 格式 的壓縮比
支持格式:
壓縮及解壓縮:7z、ZIP、GZIP、BZIP2 和 TAR (目前不支持RAR格式,是因為RAR是一種商業格式)
僅解壓縮:RAR、CAB、ISO、ARJ、LZH、CHM、WIM、Z、CPIO、RPM、DEB 和 NSIS
對於 ZIP 及 GZIP 格式,7-Zip 能提供比使用 PKZip 及 WinZip 高 2-10% 的壓縮比
7z 格式支持創建自釋放(SFX)壓縮檔案
集成 Windows 外殼擴展
強大的的文件管理
強大的命令行版本
支持 FAR Manager 插件
支持 69 種語言
通常使用 7-Zip 的 7z 格式能比使用 zip 格式的壓縮檔案小 30-70%。並且使用 7-Zip 創建的 zip 格式比大多數其它壓縮軟體創建的都小 2-10%。
6. 求7z演算法的原理,詳細
7z演算法的原理:
簡單地說也就是把文件中的重復數據用更簡潔的方法表示,例如一個文件中有1000個字母A,那麼這將佔用1KB的數據空間,如果用壓縮演算法就可以用1000A來表示,那麼它只需要5個位元組的數據空間,壓縮比達到了200倍。
7z簡介:7z 是一種主流高效的壓縮格式,它擁有極高的壓縮比。在計算機科學中,7z是一種可以使用多種壓縮演算法進行數據壓縮的檔案格式。該格式最初被7-Zip實現並採用,但是這種檔案格式是公有的,並且7-Zip軟體本身亦在GNU寬通用公共許可證 (GNU LGPL)協議下開放源代碼。目前LZMA軟體開發工具包的最新版本為V9.34。7z格式的MIME類型為application/x-7z-compressed。
7. LZSS演算法名稱的由來
LZSS是一種由LZ77改進的基於字典壓縮的編碼,LZSS編碼的原理是搜索目前未壓縮的數據是否在前面出現過,如果出現過則利用前面出現的位置和長度代替現在的未壓縮數據。
LZ77演算法是由 Lempel-Ziv 在1977發明的。LZ77演算法有許多變種演算法,LZSS演算法是LZ77其中一種變形,雖然LZ77有多種變形演算法,但是這些基於LZ77變形的演算法背後的原理都是一樣的。
請原諒我復制了上面倆段
我只是想告訴你 加上我自己的認知和我在網上能搜索到的所有內容來告訴你
LZSS 後SS是一種演算法 不代表意義
不是人名 就象LZ77一樣
它是演變過來的 區別LZ77 以LZSS演算法的形式
後面SS 是代表這種演算法的規律和變化
所以就象加減乘除 它僅代表一種運算方式
看到LZSS你就想到了這 LZ77又是另一種
不知道我的淺薄解釋您滿意不?
8. 數據壓縮技術的數據壓縮技術簡史
電腦里的數據壓縮其實類似於美眉們的瘦身運動,不外有兩大功用。第一,可以節省空間。拿瘦身美眉來說,要是八個美眉可以擠進一輛計程車里,那該有多省錢啊!第二,可以減少對帶寬的佔用。例如,我們都想在不到 100Kbps 的 GPRS 網上觀看 DVD 大片,這就好比瘦身美眉們總希望用一尺布裁出七件吊帶衫,前者有待於數據壓縮技術的突破性進展,後者則取決於美眉們的恆心和毅力。
簡單地說,如果沒有數據壓縮技術,我們就沒法用 WinRAR 為 Email 中的附件瘦身;如果沒有數據壓縮技術,市場上的數碼錄音筆就只能記錄不到 20 分鍾的語音;如果沒有數據壓縮技術,從 Internet 上下載一部電影也許要花半年的時間……可是這一切究竟是如何實現的呢?數據壓縮技術又是怎樣從無到有發展起來的呢? 一千多年前的中國學者就知道用「班馬」這樣的縮略語來指代班固和司馬遷,這種崇尚簡約的風俗一直延續到了今天的 Internet 時代:當我們在 BBS 上用「 7456 」代表「氣死我了」,或是用「 B4 」代表「 Before 」的時候,我們至少應該知道,這其實就是一種最簡單的數據壓縮呀。
嚴格意義上的數據壓縮起源於人們對概率的認識。當我們對文字信息進行編碼時,如果為出現概率較高的字母賦予較短的編碼,為出現概率較低的字母賦予較長的編碼,總的編碼長度就能縮短不少。遠在計算機出現之前,著名的 Morse 電碼就已經成功地實踐了這一準則。在 Morse 碼表中,每個字母都對應於一個唯一的點劃組合,出現概率最高的字母 e 被編碼為一個點「 . 」,而出現概率較低的字母 z 則被編碼為「 --.. 」。顯然,這可以有效縮短最終的電碼長度。
資訊理論之父 C. E. Shannon 第一次用數學語言闡明了概率與信息冗餘度的關系。在 1948 年發表的論文「通信的數學理論( A Mathematical Theory of Communication )」中, Shannon 指出,任何信息都存在冗餘,冗餘大小與信息中每個符號(數字、字母或單詞)的出現概率或者說不確定性有關。 Shannon 借鑒了熱力學的概念,把信息中排除了冗餘後的平均信息量稱為「信息熵」,並給出了計算信息熵的數學表達式。這篇偉大的論文後來被譽為資訊理論的開山之作,信息熵也奠定了所有數據壓縮演算法的理論基礎。從本質上講,數據壓縮的目的就是要消除信息中的冗餘,而信息熵及相關的定理恰恰用數學手段精確地描述了信息冗餘的程度。利用信息熵公式,人們可以計算出信息編碼的極限,即在一定的概率模型下,無損壓縮的編碼長度不可能小於信息熵公式給出的結果。
有了完備的理論,接下來的事就是要想辦法實現具體的演算法,並盡量使演算法的輸出接近信息熵的極限了。當然,大多數工程技術人員都知道,要將一種理論從數學公式發展成實用技術,就像僅憑一個 E=mc 2 的公式就要去製造核武器一樣,並不是一件很容易的事。 設計具體的壓縮演算法的過程通常更像是一場數學游戲。開發者首先要尋找一種能盡量精確地統計或估計信息中符號出現概率的方法,然後還要設計一套用最短的代碼描述每個符號的編碼規則。統計學知識對於前一項工作相當有效,迄今為止,人們已經陸續實現了靜態模型、半靜態模型、自適應模型、 Markov 模型、部分匹配預測模型等概率統計模型。相對而言,編碼方法的發展歷程更為曲折一些。
1948 年, Shannon 在提出信息熵理論的同時,也給出了一種簡單的編碼方法—— Shannon 編碼。 1952 年, R. M. Fano 又進一步提出了 Fano 編碼。這些早期的編碼方法揭示了變長編碼的基本規律,也確實可以取得一定的壓縮效果,但離真正實用的壓縮演算法還相去甚遠。
第一個實用的編碼方法是由 D. A. Huffman 在 1952 年的論文「最小冗餘度代碼的構造方法( A Method for the Construction of Minimum Rendancy Codes )」中提出的。直到今天,許多《數據結構》教材在討論二叉樹時仍要提及這種被後人稱為 Huffman 編碼的方法。 Huffman 編碼在計算機界是如此著名,以至於連編碼的發明過程本身也成了人們津津樂道的話題。據說, 1952 年時,年輕的 Huffman 還是麻省理工學院的一名學生,他為了向老師證明自己可以不參加某門功課的期末考試,才設計了這個看似簡單,但卻影響深遠的編碼方法。
Huffman 編碼效率高,運算速度快,實現方式靈活,從 20 世紀 60 年代至今,在數據壓縮領域得到了廣泛的應用。例如,早期 UNIX 系統上一個不太為現代人熟知的壓縮程序 COMPACT 實際就是 Huffman 0 階自適應編碼的具體實現。 20 世紀 80 年代初, Huffman 編碼又出現在 CP/M 和 DOS 系統中,其代表程序叫 SQ 。今天,在許多知名的壓縮工具和壓縮演算法(如 WinRAR 、 gzip 和 JPEG )里,都有 Huffman 編碼的身影。不過, Huffman 編碼所得的編碼長度只是對信息熵計算結果的一種近似,還無法真正逼近信息熵的極限。正因為如此,現代壓縮技術通常只將 Huffman 視作最終的編碼手段,而非數據壓縮演算法的全部。
科學家們一直沒有放棄向信息熵極限挑戰的理想。 1968 年前後, P. Elias 發展了 Shannon 和 Fano 的編碼方法,構造出從數學角度看來更為完美的 Shannon-Fano-Elias 編碼。沿著這一編碼方法的思路, 1976 年, J. Rissanen 提出了一種可以成功地逼近信息熵極限的編碼方法——算術編碼。 1982 年, Rissanen 和 G. G. Langdon 一起改進了算術編碼。之後,人們又將算術編碼與 J. G. Cleary 和 I. H. Witten 於 1984 年提出的部分匹配預測模型( PPM )相結合,開發出了壓縮效果近乎完美的演算法。今天,那些名為 PPMC 、 PPMD 或 PPMZ 並號稱壓縮效果天下第一的通用壓縮演算法,實際上全都是這一思路的具體實現。
對於無損壓縮而言, PPM 模型與算術編碼相結合,已經可以最大程度地逼近信息熵的極限。看起來,壓縮技術的發展可以到此為止了。不幸的是,事情往往不像想像中的那樣簡單:算術編碼雖然可以獲得最短的編碼長度,但其本身的復雜性也使得算術編碼的任何具體實現在運行時都慢如蝸牛。即使在摩爾定律大行其道, CPU 速度日新月異的今天,算術編碼程序的運行速度也很難滿足日常應用的需求。沒辦法,如果不是後文將要提到的那兩個猶太人,我們還不知要到什麼時候才能用上 WinZIP 這樣方便實用的壓縮工具呢。 逆向思維永遠是科學和技術領域里出奇制勝的法寶。就在大多數人絞盡腦汁想改進 Huffman 或算術編碼,以獲得一種兼顧了運行速度和壓縮效果的「完美」編碼的時候,兩個聰明的猶太人 J. Ziv 和 A. Lempel 獨辟蹊徑,完全脫離 Huffman 及算術編碼的設計思路,創造出了一系列比 Huffman 編碼更有效,比算術編碼更快捷的壓縮演算法。我們通常用這兩個猶太人姓氏的縮寫,將這些演算法統稱為 LZ 系列演算法。
按照時間順序, LZ 系列演算法的發展歷程大致是: Ziv 和 Lempel 於 1977 年發表題為「順序數據壓縮的一個通用演算法( A Universal Algorithm for Sequential Data Compression )」的論文,論文中描述的演算法被後人稱為 LZ77 演算法。 1978 年,二人又發表了該論文的續篇「通過可變比率編碼的獨立序列的壓縮( Compression of Indivial Sequences via Variable Rate Coding )」,描述了後來被命名為 LZ78 的壓縮演算法。 1984 年, T. A. Welch 發表了名為「高性能數據壓縮技術( A Technique for High Performance Data Compression )」的論文,描述了他在 Sperry 研究中心(該研究中心後來並入了 Unisys 公司)的研究成果,這是 LZ78 演算法的一個變種,也就是後來非常有名的 LZW 演算法。 1990 年後, T. C. Bell 等人又陸續提出了許多 LZ 系列演算法的變體或改進版本。
說實話, LZ 系列演算法的思路並不新鮮,其中既沒有高深的理論背景,也沒有復雜的數學公式,它們只是簡單地延續了千百年來人們對字典的追崇和喜好,並用一種極為巧妙的方式將字典技術應用於通用數據壓縮領域。通俗地說,當你用字典中的頁碼和行號代替文章中每個單詞的時候,你實際上已經掌握了 LZ 系列演算法的真諦。這種基於字典模型的思路在表面上雖然和 Shannon 、 Huffman 等人開創的統計學方法大相徑庭,但在效果上一樣可以逼近信息熵的極限。而且,可以從理論上證明, LZ 系列演算法在本質上仍然符合信息熵的基本規律。
LZ 系列演算法的優越性很快就在數據壓縮領域里體現 了 出來,使用 LZ 系列演算法的工具軟體數量呈爆炸式增長。 UNIX 系統上最先出現了使用 LZW 演算法的 compress 程序,該程序很快成為了 UNIX 世界的壓縮標准。緊隨其後的是 MS-DOS 環境下的 ARC 程序,以及 PKWare 、 PKARC 等仿製品。 20 世紀 80 年代,著名的壓縮工具 LHarc 和 ARJ 則是 LZ77 演算法的傑出代表。
今天, LZ77 、 LZ78 、 LZW 演算法以及它們的各種變體幾乎壟斷了整個通用數據壓縮領域,我們熟悉的 PKZIP 、 WinZIP 、 WinRAR 、 gzip 等壓縮工具以及 ZIP 、 GIF 、 PNG 等文件格式都是 LZ 系列演算法的受益者,甚至連 PGP 這樣的加密文件格式也選擇了 LZ 系列演算法作為其數據壓縮的標准。
沒有誰能否認兩位猶太人對數據壓縮技術的貢獻。我想強調的只是,在工程技術領域,片面追求理論上的完美往往只會事倍功半,如果大家能像 Ziv 和 Lempel 那樣,經常換個角度來思考問題,沒准兒你我就能發明一種新的演算法,就能在技術方展史上揚名立萬呢。 LZ 系列演算法基本解決了通用數據壓縮中兼顧速度與壓縮效果的難題。但是,數據壓縮領域里還有另一片更為廣闊的天地等待著我們去探索。 Shannon 的資訊理論告訴我們,對信息的先驗知識越多,我們就可以把信息壓縮得越小。換句話說,如果壓縮演算法的設計目標不是任意的數據源,而是基本屬性已知的特種數據,壓縮的效果就會進一步提高。這提醒我們,在發展通用壓縮演算法之餘,還必須認真研究針對各種特殊數據的專用壓縮演算法。比方說,在今天的數碼生活中,遍布於數碼相機、數碼錄音筆、數碼隨身聽、數碼攝像機等各種數字設備中的圖像、音頻、視頻信息,就必須經過有效的壓縮才能在硬碟上存儲或是通過 USB 電纜傳輸。實際上,多媒體信息的壓縮一直是數據壓縮領域里的重要課題,其中的每一個分支都有可能主導未來的某個技術潮流,並為數碼產品、通信設備和應用軟體開發商帶來無限的商機。
讓我們先從圖像數據的壓縮講起。通常所說的圖像可以被分為二值圖像、灰度圖像、彩色圖像等不同的類型。每一類圖像的壓縮方法也不盡相同。
傳真技術的發明和廣泛使用促進了二值圖像壓縮演算法的飛速發展。 CCITT (國際電報電話咨詢委員會,是國際電信聯盟 ITU 下屬的一個機構)針對傳真類應用建立了一系列圖像壓縮標准,專用於壓縮和傳遞二值圖像。這些標准大致包括 20 世紀 70 年代後期的 CCITT Group 1 和 Group 2 , 1980 年的 CCITT Group 3 ,以及 1984 年的 CCITT Group 4 。為了適應不同類型的傳真圖像,這些標准所用的編碼方法包括了一維的 MH 編碼和二維的 MR 編碼,其中使用了行程編碼( RLE )和 Huffman 編碼等技術。今天,我們在辦公室或家裡收發傳真時,使用的大多是 CCITT Group 3 壓縮標准,一些基於數字網路的傳真設備和存放二值圖像的 TIFF 文件則使用了 CCITT Group 4 壓縮標准。 1993 年, CCITT 和 ISO (國際標准化組織)共同成立的二值圖像聯合專家組( Joint Bi-level Image Experts Group , JBIG )又將二值圖像的壓縮進一步發展為更加通用的 JBIG 標准。
實際上,對於二值圖像和非連續的灰度、彩色圖像而言,包括 LZ 系列演算法在內的許多通用壓縮演算法都能獲得很好的壓縮效果。例如,誕生於 1987 年的 GIF 圖像文件格式使用的是 LZW 壓縮演算法, 1995 年出現的 PNG 格式比 GIF 格式更加完善,它選擇了 LZ77 演算法的變體 zlib 來壓縮圖像數據。此外,利用前面提到過的 Huffman 編碼、算術編碼以及 PPM 模型,人們事實上已經構造出了許多行之有效的圖像壓縮演算法。
但是,對於生活中更加常見的,像素值在空間上連續變化的灰度或彩色圖像(比如數碼照片),通用壓縮演算法的優勢就不那麼明顯了。幸運的是,科學家們發現,如果在壓縮這一類圖像數據時允許改變一些不太重要的像素值,或者說允許損失一些精度(在壓縮通用數據時,我們絕不會容忍任何精度上的損失,但在壓縮和顯示一幅數碼照片時,如果一片樹林里某些樹葉的顏色稍微變深了一些,看照片的人通常是察覺不到的),我們就有可能在壓縮效果上獲得突破性的進展。這一思想在數據壓縮領域具有革命性的地位:通過在用戶的忍耐范圍內損失一些精度,我們可以把圖像(也包括音頻和視頻)壓縮到原大小的十分之一、百分之一甚至千分之一,這遠遠超出了通用壓縮演算法的能力極限。也許,這和生活中常說的「退一步海闊天空」的道理有異曲同工之妙吧。
這種允許精度損失的壓縮也被稱為有損壓縮。在圖像壓縮領域,著名的 JPEG 標準是有損壓縮演算法中的經典。 JPEG 標准由靜態圖像聯合專家組( Joint Photographic Experts Group , JPEG )於 1986 年開始制定, 1994 年後成為國際標准。 JPEG 以離散餘弦變換( DCT )為核心演算法,通過調整質量系數控制圖像的精度和大小。對於照片等連續變化的灰度或彩色圖像, JPEG 在保證圖像質量的前提下,一般可以將圖像壓縮到原大小的十分之一到二十分之一。如果不考慮圖像質量, JPEG 甚至可以將圖像壓縮到「無限小」。
JPEG 標準的最新進展是 1996 年開始制定, 2001 年正式成為國際標準的 JPEG 2000 。與 JPEG 相比, JPEG 2000 作了大幅改進,其中最重要的是用離散小波變換( DWT )替代了 JPEG 標准中的離散餘弦變換。在文件大小相同的情況下, JPEG 2000 壓縮的圖像比 JPEG 質量更高,精度損失更小。作為一個新標准, JPEG 2000 暫時還沒有得到廣泛的應用,不過包括數碼相機製造商在內的許多企業都對其應用前景表示樂觀, JPEG 2000 在圖像壓縮領域里大顯身手的那一天應該不會特別遙遠。
JPEG 標准中通過損失精度來換取壓縮效果的設計思想直接影響了視頻數據的壓縮技術。 CCITT 於 1988 年制定了電視電話和會議電視的 H.261 建議草案。 H.261 的基本思路是使用類似 JPEG 標準的演算法壓縮視頻流中的每一幀圖像,同時採用運動補償的幀間預測來消除視頻流在時間維度上的冗餘信息。在此基礎上, 1993 年, ISO 通過了動態圖像專家組( Moving Picture Experts Group , MPEG )提出的 MPEG-1 標准。 MPEG-1 可以對普通質量的視頻數據進行有效編碼。我們現在看到的大多數 VCD 影碟,就是使用 MPEG-1 標准來壓縮視頻數據的。
為了支持更清晰的視頻圖像,特別是支持數字電視等高端應用, ISO 於 1994 年提出了新的 MPEG-2 標准(相當於 CCITT 的 H.262 標准)。 MPEG-2 對圖像質量作了分級處理,可以適應普通電視節目、會議電視、高清晰數字電視等不同質量的視頻應用。在我們的生活中,可以提供高清晰畫面的 DVD 影碟所採用的正是 MPEG-2 標准。
Internet 的發展對視頻壓縮提出了更高的要求。在內容交互、對象編輯、隨機存取等新需求的刺激下, ISO 於 1999 年通過了 MPEG-4 標准(相當於 CCITT 的 H.263 和 H.263+ 標准)。 MPEG-4 標准擁有更高的壓縮比率,支持並發數據流的編碼、基於內容的交互操作、增強的時間域隨機存取、容錯、基於內容的尺度可變性等先進特性。 Internet 上新興的 DivX 和 XviD 文件格式就是採用 MPEG-4 標准來壓縮視頻數據的,它們可以用更小的存儲空間或通信帶寬提供與 DVD 不相上下的高清晰視頻,這使我們在 Internet 上發布或下載數字電影的夢想成為了現實。
就像視頻壓縮和電視產業的發展密不可分一樣,音頻數據的壓縮技術最早也是由無線電廣播、語音通信等領域里的技術人員發展起來的。這其中又以語音編碼和壓縮技術的研究最為活躍。自從 1939 年 H. Dudley 發明聲碼器以來,人們陸續發明了脈沖編碼調制( PCM )、線性預測( LPC )、矢量量化( VQ )、自適應變換編碼( ATC )、子帶編碼( SBC )等語音分析與處理技術。這些語音技術在採集語音特徵,獲取數字信號的同時,通常也可以起到降低信息冗餘度的作用。像圖像壓縮領域里的 JPEG 一樣,為獲得更高的編碼效率,大多數語音編碼技術都允許一定程度的精度損失。而且,為了更好地用二進制數據存儲或傳送語音信號,這些語音編碼技術在將語音信號轉換為數字信息之後又總會用 Huffman 編碼、算術編碼等通用壓縮演算法進一步減少數據流中的冗餘信息。
對於電腦和數字電器(如數碼錄音筆、數碼隨身聽)中存儲的普通音頻信息,我們最常使用的壓縮方法主要是 MPEG 系列中的音頻壓縮標准。例如, MPEG-1 標准提供了 Layer I 、 Layer II 和 Layer III 共三種可選的音頻壓縮標准, MPEG-2 又進一步引入了 AAC ( Advanced Audio Coding )音頻壓縮標准, MPEG-4 標准中的音頻部分則同時支持合成聲音編碼和自然聲音編碼等不同類型的應用。在這許多音頻壓縮標准中,聲名最為顯赫的恐怕要數 MPEG-1 Layer III ,也就是我們常說的 MP3 音頻壓縮標准了。從 MP3 播放器到 MP3 手機,從硬碟上堆積如山的 MP3 文件到 Internet 上版權糾紛不斷的 MP3 下載, MP3 早已超出了數據壓縮技術的范疇,而成了一種時尚文化的象徵了。
很顯然,在多媒體信息日益成為主流信息形態的數字化時代里,數據壓縮技術特別是專用於圖像、音頻、視頻的數據壓縮技術還有相當大的發展空間——畢竟,人們對信息數量和信息質量的追求是永無止境的。 從信息熵到算術編碼,從猶太人到 WinRAR ,從 JPEG 到 MP3 ,數據壓縮技術的發展史就像是一個寫滿了「創新」、「挑戰」、「突破」和「變革」的羊皮卷軸。也許,我們在這里不厭其煩地羅列年代、人物、標准和文獻,其目的只是要告訴大家,前人的成果只不過是後人有望超越的目標而已,誰知道在未來的幾年裡,還會出現幾個 Shannon ,幾個 Huffman 呢?
談到未來,我們還可以補充一些與數據壓縮技術的發展趨勢有關的話題。
1994年, M. Burrows 和 D. J. Wheeler 共同提出了一種全新的通用數據壓縮演算法。這種演算法的核心思想是對字元串輪轉後得到的字元矩陣進行排序和變換,類似的變換演算法被稱為 Burrows-Wheeler 變換,簡稱 BWT 。與 Ziv 和 Lempel 另闢蹊徑的做法如出一轍, Burrows 和 Wheeler 設計的 BWT 演算法與以往所有通用壓縮演算法的設計思路都迥然不同。如今, BWT 演算法在開放源碼的壓縮工具 bzip 中獲得了巨大的成功, bzip 對於文本文件的壓縮效果要遠好於使用 LZ 系列演算法的工具軟體。這至少可以表明,即便在日趨成熟的通用數據壓縮領域,只要能在思路和技術上不斷創新,我們仍然可以找到新的突破口。
分形壓縮技術是圖像壓縮領域近幾年來的一個熱點。這一技術起源於 B. Mandelbrot 於 1977 年創建的分形幾何學。 M. Barnsley 在 20 世紀 80 年代後期為分形壓縮奠定了理論基礎。從 20 世紀 90 年代開始, A. Jacquin 等人陸續提出了許多實驗性的分形壓縮演算法。今天,很多人相信,分形壓縮是圖像壓縮領域里最有潛力的一種技術體系,但也有很多人對此不屑一顧。無論其前景如何,分形壓縮技術的研究與發展都提示我們,在經過了幾十年的高速發展之後,也許,我們需要一種新的理論,或是幾種更有效的數學模型,以支撐和推動數據壓縮技術繼續向前躍進。
人工智慧是另一個可能對數據壓縮的未來產生重大影響的關鍵詞。既然 Shannon 認為,信息能否被壓縮以及能在多大程度上被壓縮與信息的不確定性有直接關系,假設人工智慧技術在某一天成熟起來,假設計算機可以像人一樣根據已知的少量上下文猜測後續的信息,那麼,將信息壓縮到原大小的萬分之一乃至十萬分之一,恐怕就不再是天方夜譚了。
回顧歷史之後,人們總喜歡暢想一下未來。但未來終究是未來,如果僅憑你我幾句話就可以理清未來的技術發展趨勢,那技術創新的工作豈不就索然無味了嗎?依我說,未來並不重要,重要的是,趕快到 Internet 上下載幾部大片,然後躺在沙發里,好好享受一下數據壓縮為我們帶來的無限快樂吧。