機器學習相關演算法
A. 想了解機器學習,需要知道哪些基礎演算法
學一些概率論,導數和線性代數。機器學習的本質是拿訓練樣本去做數據擬合函數,然後用擬合函數解析輸入量。機器學習比較基礎的是最小二乘法,梯度下降之類的。到後面要學線性擬合,logistic函數,SVM等等。
B. 目前最流行的機器學習演算法是什麼
毫無疑問,機器學習在過去幾年越來越受歡迎。由於大數據是目前技術行業最熱門的趨勢,機器學習是非常強大的,可以根據大量數據進行預測或計算推理。
如果你想學習機器演算法,要從何下手呢?
監督學習
1. 決策樹:決策樹是一種決策支持工具,使用的決策及其可能產生的後果,包括隨機事件的結果,資源消耗和效用的樹狀圖或模型。
從業務決策的角度來看,決策樹是人們必須要選擇是/否的問題,以評估大多數時候作出正確決策的概率。它允許您以結構化和系統的方式來解決問題,以得出邏輯結論。
2.樸素貝葉斯分類:樸素貝葉斯分類器是一種簡單的概率分類器,基於貝葉斯定理,其特徵之間具有強大(樸素)的獨立性假設。
特徵圖像是方程 - P(A | B)是後驗概率,P(B | A)是似然度,P(A)是類先驗概率,P(B)是預測先驗概率。
一些現實世界的例子是:
判斷郵件是否為垃圾郵件
分類技術,將新聞文章氛圍政治或體育類
檢查一段表達積極情緒或消極情緒的文字
用於面部識別軟體
3.普通最小二乘回歸:如果你了解統計學,你可能已經聽說過線性回歸。最小二乘法是一種執行線性回歸的方法。
您可以將線性回歸視為擬合直線穿過點狀分布的任務。有多種可能的策略可以做到這一點,「普通最小二乘法」策略就像這樣 -你可以畫一條線,然後把每個數據點,測量點和線之間的垂直距離,添加上去;擬合線將是距離總和的盡可能小的線。
線性是指您正在使用的模型來迎合數據,而最小二乘可以最小化線性模型誤差。
4.邏輯回歸: Logistic回歸是一個強大的統計學方法,用一個或多個解釋變數建模二項式結果。它通過使用邏輯函數估計概率,來衡量分類因變數與一個或多個獨立變數之間的關系,後者是累積邏輯分布。
邏輯回歸用於生活中:
信用評級
衡量營銷活動的成功率
預測某一產品的收入
某一天會有地震嗎
5.支持向量機: SVM是二元分類演算法。給定N維空間中兩種種類型的點,SVM生成(N-1)維的超平面將這些點分成2組。
假設你有一些可以線性分離的紙張中的兩種類型的點。SVM將找到一條直線,將這些點分成兩種類型,並盡可能遠離所有這些點。
在規模上,使用SVM解決的一些特大的問題(包括適當修改的實現)是:廣告、人類基因剪接位點識別、基於圖像的性別檢測,大規模圖像分類...
6.集成方法:集成方法是構建一組分類器的學習演算法,然後通過對其預測進行加權投票來對新的數據點進行分類。原始的集成方法是貝葉斯平均法,但更新的演算法包括糾錯輸出編碼、bagging和boosting。
那麼集成方法如何工作,為什麼它們優於單個模型?
均衡偏差:如果你均衡了大量的傾向民主黨的投票和大量傾向共和黨的投票,你總會得到一個不那麼偏頗的結果。
降低方差:集合大量模型的參考結果,噪音會小於單個模型的單個結果。在金融領域,這被稱為投資分散原則(diversification)——一個混搭很多種股票的投資組合,比單獨的股票更少變故。
不太可能過度擬合:如果您有單個模型不完全擬合,您以簡單的方式(平均,加權平均,邏輯回歸)結合每個模型建模,那麼一般不會發生過擬合。
無監督學習
7. 聚類演算法:聚類是對一組對象進行分組的任務,使得同一組(集群)中的對象彼此之間比其他組中的對象更相似。
每個聚類演算法是不同的,比如:
基於Centroid的演算法
基於連接的演算法
基於密度的演算法
概率
降維
神經網路/深度學習
8. 主成分分析: PCA是使用正交變換將可能相關變數的觀察值轉換為主成分的線性不相關變數值的一組統計過程。
PCA的一些應用包括壓縮、簡化數據、便於學習、可視化。請注意,領域知識在選擇是否繼續使用PCA時非常重要。數據嘈雜的情況(PCA的所有組件都有很大差異)的情況不適用。
9.奇異值分解:在線性代數中,SVD是真正復雜矩陣的因式分解。對於給定的m * n矩陣M,存在分解,使得M =UΣV,其中U和V是酉矩陣,Σ是對角矩陣。
PCA實際上是SVD的簡單應用。在計算機視覺技術中,第一個人臉識別演算法使用PCA和SVD,以將面部表示為「特徵臉」的線性組合,進行降維,然後通過簡單的方法將面部匹配到身份;雖然這種方法更復雜,但仍然依賴於類似的技術。
10.獨立成分分析: ICA是一種統計技術,用於揭示隨機變數、測量或信號集合的隱藏因素。ICA定義了觀察到的多變數數據的生成模型,通常將其作為大型樣本資料庫。
在模型中,假設數據變數是一些未知潛在變數的線性混合,混合系統也是未知的。潛變數被假定為非高斯和相互獨立的,它們被稱為觀測數據的獨立成分。
ICA與PCA相關,但它是一種更強大的技術,能夠在這些經典方法完全失敗時找到潛在的源因素。其應用包括數字圖像、文檔資料庫、經濟指標和心理測量。
C. 典型的機器學習演算法有哪些
通常而言,能夠深入研究機器學習演算法,並按照自己項目需求進行定製開發的人,編程語言真的是一個很次要的問題。
machine learning in Java
machine learning in C++
machine learning in Python
machine learning in Matlab
machine learning in R
D. 機器學習演算法中的SVM和聚類演算法
1.機器學習演算法——SVM
這種演算法就是支持向量機,而支持向量機演算法是誕生於統計學習界,這也是機器學習中的經典演算法,而支持向量機演算法從某種意義上來說是邏輯回歸演算法的強化,這就是通過給予邏輯回歸演算法更嚴格的優化條件,支持向量機演算法可以獲得比邏輯回歸更好的分類界線。不過如果通過跟高斯核的結合,支持向量機可以表達出非常復雜的分類界線,從而達成很好的的分類效果。核事實上就是一種特殊的函數,最典型的特徵就是可以將低維的空間映射到高維的空間。
2.機器學習演算法——聚類演算法
前面的演算法中的一個顯著特徵就是訓練數據中包含了標簽,訓練出的模型可以對其他未知數據預測標簽。在下面的演算法中,訓練數據都是不含標簽的,而演算法的目的則是通過訓練,推測出這些數據的標簽。這類演算法有一個統稱,即無監督演算法。無監督演算法中最典型的代表就是聚類演算法。而聚類演算法中最典型的代表就是K-Means演算法。這一演算法被廣大朋友所應用。
想要學習了解更多機器學習的知識,推薦CDA數據分析師課程。「CDA 數據分析師」具體指在互聯網、金融、零售、咨詢、電信、醫療、旅遊等行業專門 從事數據的採集、清洗、處理、分析並能製作業務報告、提供決策的新型數據分析人才,推動科技創新進步,助力經濟持續發展。點擊預約免費試聽課。
E. 機器學習有哪些演算法
1. 線性回歸
在統計學和機器學習領域,線性回歸可能是最廣為人知也最易理解的演算法之一。
2. Logistic 回歸
Logistic 回歸是機器學習從統計學領域借鑒過來的另一種技術。它是二分類問題的首選方法。
3. 線性判別分析
Logistic 回歸是一種傳統的分類演算法,它的使用場景僅限於二分類問題。如果你有兩個以上的類,那麼線性判別分析演算法(LDA)是首選的線性分類技術。
4.分類和回歸樹
決策樹是一類重要的機器學習預測建模演算法。
5. 樸素貝葉斯
樸素貝葉斯是一種簡單而強大的預測建模演算法。
6. K 最近鄰演算法
K 最近鄰(KNN)演算法是非常簡單而有效的。KNN 的模型表示就是整個訓練數據集。
7. 學習向量量化
KNN 演算法的一個缺點是,你需要處理整個訓練數據集。
8. 支持向量機
支持向量機(SVM)可能是目前最流行、被討論地最多的機器學習演算法之一。
9. 袋裝法和隨機森林
隨機森林是最流行也最強大的機器學習演算法之一,它是一種集成機器學習演算法。
想要學習了解更多機器學習的知識,推薦CDA數據分析師課程。CDA(Certified Data Analyst),即「CDA 數據分析師」,是在數字經濟大背景和人工智慧時代趨勢下,面向全行業的專業權威國際資格認證,旨在提升全民數字技能,助力企業數字化轉型,推動行業數字化發展。點擊預約免費試聽課。
F. 機器學習中需要掌握的演算法有哪些
在學習機器學習中,我們需要掌握很多演算法,通過這些演算法我們能夠更快捷地利用機器學習解決更多的問題,讓人工智慧實現更多的功能,從而讓人工智慧變得更智能。因此,本文為大家介紹一下機器學習中需要掌握的演算法,希望這篇文章能夠幫助大家更深入地理解機器學習。
首先我們為大家介紹的是支持向量機學習演算法。其實支持向量機演算法簡稱SVM,一般來說,支持向量機演算法是用於分類或回歸問題的監督機器學習演算法。SVM從數據集學習,這樣SVM就可以對任何新數據進行分類。此外,它的工作原理是通過查找將數據分類到不同的類中。我們用它來將訓練數據集分成幾類。而且,有許多這樣的線性超平面,SVM試圖最大化各種類之間的距離,這被稱為邊際最大化。而支持向量機演算法那分為兩類,第一就是線性SVM。在線性SVM中,訓練數據必須通過超平面分離分類器。第二就是非線性SVM,在非線性SVM中,不可能使用超平面分離訓練數據。
然後我們給大家介紹一下Apriori機器學習演算法,需要告訴大家的是,這是一種無監督的機器學習演算法。我們用來從給定的數據集生成關聯規則。關聯規則意味著如果發生項目A,則項目B也以一定概率發生,生成的大多數關聯規則都是IF_THEN格式。Apriori機器學習演算法工作的基本原理就是如果項目集頻繁出現,則項目集的所有子集也經常出現。
接著我們給大家介紹一下決策樹機器學習演算法。其實決策樹是圖形表示,它利用分支方法來舉例說明決策的所有可能結果。在決策樹中,內部節點表示對屬性的測試。因為樹的每個分支代表測試的結果,並且葉節點表示特定的類標簽,即在計算所有屬性後做出的決定。此外,我們必須通過從根節點到葉節點的路徑來表示分類。
而隨機森林機器學習演算法也是一個重要的演算法,它是首選的機器學習演算法。我們使用套袋方法創建一堆具有隨機數據子集的決策樹。我們必須在數據集的隨機樣本上多次訓練模型,因為我們需要從隨機森林演算法中獲得良好的預測性能。此外,在這種集成學習方法中,我們必須組合所有決策樹的輸出,做出最後的預測。此外,我們通過輪詢每個決策樹的結果來推導出最終預測。
在這篇文章中我們給大家介紹了關於機器學習的演算法,具體包括隨機森林機器學習演算法、決策樹演算法、apriori演算法、支持向量機演算法。相信大家看了這篇文章以後對機器學習有個更全面的認識,最後祝願大家都學有所成、學成歸來。
G. 機器學習中常用的方法有什麼
機器學習中常用的方法有LR,SVM,集成學習,貝葉斯
H. 機器學習可以完成哪些任務,列舉出每種任務的常見演算法。
機器學習完成的任務好多。
1.分揀。進行不同物品的分揀。大多是使用感測器進行識別和分揀。
2.排序。將已知的散亂數據進行有規律的排序,一般使用對比,冒泡排序法。
3.人臉識別。通過記錄人體面部的一些特徵,存入資料庫,對比查找進行識別。
I. 常用機器學習方法有哪些
機器學習中常用的方法有:
(1) 歸納學習
符號歸納學習:典型的符號歸納學習有示例學習、決策樹學習。
函數歸納學習(發現學習):典型的函數歸納學習有神經網路學習、示例學習、發現學習、統計學習。
(2) 演繹學習
(3) 類比學習:典型的類比學習有案例(範例)學習。
(4) 分析學習:典型的分析學習有解釋學習、宏操作學習。
(9)機器學習相關演算法擴展閱讀:
機器學習常見演算法:
1、決策樹演算法
決策樹及其變種是一類將輸入空間分成不同的區域,每個區域有獨立參數的演算法。決策樹演算法充分利用了樹形模型,根節點到一個葉子節點是一條分類的路徑規則,每個葉子節點象徵一個判斷類別。先將樣本分成不同的子集,再進行分割遞推,直至每個子集得到同類型的樣本,從根節點開始測試,到子樹再到葉子節點,即可得出預測類別。此方法的特點是結構簡單、處理數據效率較高。
2、樸素貝葉斯演算法
樸素貝葉斯演算法是一種分類演算法。它不是單一演算法,而是一系列演算法,它們都有一個共同的原則,即被分類的每個特徵都與任何其他特徵的值無關。樸素貝葉斯分類器認為這些「特徵」中的每一個都獨立地貢獻概率,而不管特徵之間的任何相關性。然而,特徵並不總是獨立的,這通常被視為樸素貝葉斯演算法的缺點。簡而言之,樸素貝葉斯演算法允許我們使用概率給出一組特徵來預測一個類。與其他常見的分類方法相比,樸素貝葉斯演算法需要的訓練很少。在進行預測之前必須完成的唯一工作是找到特徵的個體概率分布的參數,這通常可以快速且確定地完成。這意味著即使對於高維數據點或大量數據點,樸素貝葉斯分類器也可以表現良好。
3、支持向量機演算法
基本思想可概括如下:首先,要利用一種變換將空間高維化,當然這種變換是非線性的,然後,在新的復雜空間取最優線性分類表面。由此種方式獲得的分類函數在形式上類似於神經網路演算法。支持向量機是統計學習領域中一個代表性演算法,但它與傳統方式的思維方法很不同,輸入空間、提高維度從而將問題簡短化,使問題歸結為線性可分的經典解問題。支持向量機應用於垃圾郵件識別,人臉識別等多種分類問題。
J. 機器學習有幾種演算法
1. 線性回歸
工作原理:該演算法可以按其權重可視化。但問題是,當你無法真正衡量它時,必須通過觀察其高度和寬度來做一些猜測。通過這種可視化的分析,可以獲取一個結果。
2. 邏輯回歸
根據一組獨立變數,估計離散值。它通過將數據匹配到logit函數來幫助預測事件。
3. 決策樹
利用監督學習演算法對問題進行分類。決策樹是一種支持工具,它使用樹狀圖來決定決策或可能的後果、機會事件結果、資源成本和實用程序。根據獨立變數,將其劃分為兩個或多個同構集。
4. 支持向量機(SVM)
基本原理(以二維數據為例):如果訓練數據是分布在二維平面上的點,它們按照其分類聚集在不同的區域。基於分類邊界的分類演算法的目標是,通過訓練,找到這些分類之間的邊界(直線的――稱為線性劃分,曲線的――稱為非線性劃分)。對於多維數據(如N維),可以將它們視為N維空間中的點,而分類邊界就是N維空間中的面,稱為超面(超面比N維空間少一維)。線性分類器使用超平面類型的邊界,非線性分類器使用超曲面。
5. 樸素貝葉斯
樸素貝葉斯認為每個特徵都是獨立於另一個特徵的。即使在計算結果的概率時,它也會考慮每一個單獨的關系。
它不僅易於使用,而且能有效地使用大量的數據集,甚至超過了高度復雜的分類系統。
6. KNN(K -最近鄰)
該演算法適用於分類和回歸問題。在數據科學行業中,它更常用來解決分類問題。
這個簡單的演算法能夠存儲所有可用的案例,並通過對其k近鄰的多數投票來對任何新事件進行分類。然後將事件分配給與之匹配最多的類。一個距離函數執行這個測量過程。
7. k – 均值
這種無監督演算法用於解決聚類問題。數據集以這樣一種方式列在一個特定數量的集群中:所有數據點都是同質的,並且與其他集群中的數據是異構的。
8. 隨機森林
利用多棵決策樹對樣本進行訓練並預測的一種分類器被稱為隨機森林。為了根據其特性來分類一個新對象,每棵決策樹都被排序和分類,然後決策樹投票給一個特定的類,那些擁有最多選票的被森林所選擇。
9. 降維演算法
在存儲和分析大量數據時,識別多個模式和變數是具有挑戰性的。維數簡化演算法,如決策樹、因子分析、缺失值比、隨機森林等,有助於尋找相關數據。
10. 梯度提高和演演算法
這些演算法是在處理大量數據,以作出准確和快速的預測時使用的boosting演算法。boosting是一種組合學習演算法,它結合了幾種基本估計量的預測能力,以提高效力和功率。
綜上所述,它將所有弱或平均預測因子組合成一個強預測器。