當前位置:首頁 » 操作系統 » 物體數學演算法

物體數學演算法

發布時間: 2022-08-01 23:11:28

1. 數學演算法

main()
{
long f1,f2;
int i;
f1=f2=1;
for(i=1;i<=20;i++)
{ printf("%12ld %12ld",f1,f2);
if(i%2==0) printf("\n");/*控制輸出,每行四個*/
f1=f1+f2; /*前兩個月加起來賦值給第三個月*/
f2=f1+f2; /*前兩個月加起來賦值給第三個月*/
}
}

有一對兔子,從出生後第3個月起每個月都生一對兔子,小兔子長到第三個月後每個月又生一對兔子,假如兔子都不死,問每個月的兔子總數為多少?

斐波那契數列

斐波那契①是中世紀佔主導地位的數學家之一,他在算術、代數和幾何等方面多有貢獻.他生於比薩的列奧納多家族(1175—1250),是一位義大利海關設在南部非洲布吉亞的官員的兒子.由於他父親的工作,使他得以游歷了東方和阿拉伯的許多城市.而在這些地區,斐波那契熟練地掌握了印度—阿拉伯的十進制系統,該系統具有位置值並使用了零的符號.在那時,義大利仍然使用羅馬數字進行計算.斐波那契看到了這種美麗的印度—阿拉伯數字的價值,並積極地提倡使用它們.公元1202年,他寫了《算盤書》一書,這是一本廣博的工具書,其中說明了怎樣應用印度—阿拉伯數字,以及如何用它們進行加、減、乘、除計算和解題,此外還對代數和幾何進行了進一步的探討.義大利商人起初不願意改變老的習慣,後來通過對阿拉伯數字不斷地接觸,加上斐波那契和其他數學家的工作,終使印度—阿拉伯數字系統得以在歐洲推廣,並被緩慢地接受.

斐波那契數列——1,1,2,3,5,8,13,21,34,…

具有諷刺意味的是:斐波那契在今天的著名,是緣於一個數列.而這個數列則來自他的《算盤書》中一道並不出名的問題.他當時寫這道題只是考慮作為一個智力練習.然而,到了19世紀,法國數學家E·盧卡斯出版了一部四卷本的有關娛樂數學方面的著作時,才把斐波那契的名字,加到該問題的解答和所出現的數列上去.

《算盤書》中引致斐波那契數列的問題是:

1)假定一個月大小的一對兔子(雄和雌的),對於繁殖還太年輕,但兩個月大小的兔子便足夠成熟.又假定從第二個月開始,每一個月它們都繁殖一對新的兔子(雄和雌的).

2)如果每一對兔子的繁殖都按上面說的同樣的方式.試問,從開始起每個月有多少對兔子呢?

免子的對數

斐波那契數列的每一項,都等於它前兩項的和.用公式表示為:

Fn=Fn-1+Fn-2.

那時,斐波那契並沒有去研究這種數列的結果,從而他沒有給出任何真正有意義的東西.一直到19世紀,當數學家們開始對這個數列感興趣時,它的性質和它所觸及的領域,才開始顯現出來.

斐波那契數列出現在:

1)帕斯卡三角形,二項展開式和概率.

2)黃金比值突平鵓匭危?

3)自然和植物.

4)使人感興趣的數學戲法.

5)數學恆等式

2. 5年級數學不規則物體的計算方法

把物體放進裝有水的容器里
水體積的增量就是物體的體積

3. 物體的體積怎麼算

規則的物體,比如正方體長方體圓柱體等,體積演算法是Sh,也就是底面積×高
如果不規則物體,那就質量÷密度=體積

4. 超幾何分布的數學期望和方差的演算法

1、期望值計算公式:

E(X)=(n*M)/N [其中x是樣本數,n為樣本容量,M為樣本總數,N為總體中的個體總數],求出均值,這就是超幾何分布的數學期望值。

2、方差計算公式:

V(X)=X1^2*P1+X2^2*P2+...Xn^2*Pn-a^2 [這里設a為期望值]

(4)物體數學演算法擴展閱讀:

在統計學中,當估算一個變數的期望值時,一個經常用到的方法是重復測量此變數的值,然後用所得數據的平均值來作為此變數的期望值的估計。

在概率分布中,期望值和方差或標准差是一種分布的重要特徵。

在經典力學中,物體重心的演算法與期望值的演算法十分近似。

當數據分布比較分散(即數據在平均數附近波動較大)時,各個數據與平均數的差的平方和較大,方差就較大;當數據分布比較集中時,各個數據與平均數的差的平方和較小。因此方差越大,數據的波動越大;方差越小,數據的波動就越小。

樣本中各數據與樣本平均數的差的平方和的平均數叫做樣本方差;樣本方差的算術平方根叫做樣本標准差。樣本方差和樣本標准差都是衡量一個樣本波動大小的量,樣本方差或樣本標准差越大,樣本數據的波動就越大。

5. 高二數學 演算法的概念 在線等!!!!!!!!!!!!!

演算法 參考出處:http://blog.csdn.net/ctu_85/archive/2008/05/11/2432736.aspx
一、什麼是演算法
演算法是一系列解決問題的清晰指令,也就是說,能夠對一定規范的輸入,在有限時間內獲得所要求的輸出。演算法常常含有重復的步驟和一些比較或邏輯判斷。如果一個演算法有缺陷,或不適合於某個問題,執行這個演算法將不會解決這個問題。不同的演算法可能用不同的時間、空間或效率來完成同樣的任務。一個演算法的優劣可以用空間復雜度與時間復雜度來衡量。
演算法的時間復雜度是指演算法需要消耗的時間資源。一般來說,計算機演算法是問題規模n 的函數f(n),演算法執行的時間的增長率與f(n) 的增長率正相關,稱作漸進時間復雜度(Asymptotic Time Complexity)。時間復雜度用「O(數量級)」來表示,稱為「階」。常見的時間復雜度有: O(1)常數階;O(log2n)對數階;O(n)線性階;O(n2)平方階。
演算法的空間復雜度是指演算法需要消耗的空間資源。其計算和表示方法與時間復雜度類似,一般都用復雜度的漸近性來表示。同時間復雜度相比,空間復雜度的分析要簡單得多。
[font class="Apple-style-span" style="font-weight: bold;" id="bks_etfhxykd"]演算法 Algorithm [/font]
演算法是在有限步驟內求解某一問題所使用的一組定義明確的規則。通俗點說,就是計算機解題的過程。在這個過程中,無論是形成解題思路還是編寫程序,都是在實施某種演算法。前者是推理實現的演算法,後者是操作實現的演算法。
一個演算法應該具有以下五個重要的特徵:
1、有窮性: 一個演算法必須保證執行有限步之後結束;
2、確切性: 演算法的每一步驟必須有確切的定義;
3、輸入:一個演算法有0個或多個輸入,以刻畫運算對象的初始情況,所謂0個輸入是指演算法本身定除了初始條件;
4、輸出:一個演算法有一個或多個輸出,以反映對輸入數據加工後的結果。沒有輸出的演算法是毫無意義的;
5、可行性: 演算法原則上能夠精確地運行,而且人們用筆和紙做有限次運算後即可完成。
演算法的設計要求
1)正確性(Correctness)
有4個層次:
A.程序不含語法錯誤;
B.程序對幾組輸入數據能夠得出滿足規格要求的結果;
C.程序對精心選擇的、典型的、苛刻的、帶有刁難性的幾組輸入數據能夠得出滿足規格要求的結果;
D.程序對一切合法的輸入數據都能產生滿足規格要求的結果。
2)可讀性(Readability)
演算法的第一目的是為了閱讀和交流;
可讀性有助於對演算法的理解;
可讀性有助於對演算法的調試和修改。
3)高效率與低存儲
處理速度快;存儲容量小
時間和空間是矛盾的、實際問題的求解往往是求得時間和空間的統一、折中。
演算法的描述 演算法的描述方式(常用的)
演算法描述 自然語言
流程圖 特定的表示演算法的圖形符號
偽語言 包括程序設計語言的三大基本結構及自然語言的一種語言
類語言 類似高級語言的語言,例如,類PASCAL、類C語言。
演算法的評價 演算法評價的標准:時間復雜度和空間復雜度。
1)時間復雜度 指在計算機上運行該演算法所花費的時間。用「O(數量級)」來表示,稱為「階」。
常見的時間復雜度有: O(1)常數階;O(logn)對數階;O(n)線性階;O(n^2)平方階
2)空間復雜度 指演算法在計算機上運行所佔用的存儲空間。度量同時間復雜度。
時間復雜度舉例
(a) X:=X+1 ; O(1)
(b) FOR I:=1 TO n DO
X:= X+1; O(n)
(c) FOR I:= 1 TO n DO
FOR J:= 1 TO n DO
X:= X+1; O(n^2)
「演算法」一詞最早來自公元 9世紀 波斯數學家比阿勒·霍瓦里松的一本影響深遠的著作《代數對話錄》。20世紀的 英國 數學家 圖靈 提出了著名的圖靈論點,並抽象出了一台機器,這台機器被我們稱之為 圖靈機 。圖靈的思想對演算法的發展起到了重要的作用。
演算法是 計算機 處理信息的本質,因為 計算機程序 本質上是一個演算法,告訴計算機確切的步驟來執行一個指定的任務,如計算職工的薪水或列印學生的成績單。 一般地,當演算法在處理信息時,數據會從輸入設備讀取,寫入輸出設備,可能保存起來以供以後使用。
這是演算法的一個簡單的例子。
我們有一串隨機數列。我們的目的是找到這個數列中最大的數。如果將數列中的每一個數字看成是一顆豆子的大小 可以將下面的演算法形象地稱為「撿豆子」:
首先將第一顆豆子(數列中的第一個數字)放入口袋中。
從第二顆豆子開始檢查,直到最後一顆豆子。如果正在檢查的豆子比口袋中的還大,則將它撿起放入口袋中,同時丟掉原先的豆子。 最後口袋中的豆子就是所有的豆子中最大的一顆。
下面是一個形式演算法,用近似於 編程語言 的 偽代碼 表示
給定:一個數列「list",以及數列的長度"length(list)" largest = list[1] for counter = 2 to length(list): if list[counter] > largest: largest = list[counter] print largest
符號說明:
= 用於表示賦值。即:右邊的值被賦予給左邊的變數。
List[counter] 用於表示數列中的第 counter 項。例如:如果 counter 的值是5,那麼 List[counter] 表示數列中的第5項。
<= 用於表示「小於或等於」。
二、演算法設計的方法
1.遞推法
遞推法是利用問題本身所具有的一種遞推關系求問題解的一種方法。設要求問題規模為N的解,當N=1時,解或為已知,或能非常方便地得到解。能採用遞推法構造演算法的問題有重要的遞推性質,即當得到問題規模為i-1的解後,由問題的遞推性質,能從已求得的規模為1,2,…,i-1的一系列解,構造出問題規模為I的解。這樣,程序可從i=0或i=1出發,重復地,由已知至i-1規模的解,通過遞推,獲得規模為i的解,直至得到規模為N的解。
【問題】 階乘計算
問題描述:編寫程序,對給定的n(n≤100),計算並輸出k的階乘k!(k=1,2,…,n)的全部有效數字。
由於要求的整數可能大大超出一般整數的位數,程序用一維數組存儲長整數,存儲長整數數組的每個元素只存儲長整數的一位數字。如有m位成整數N用數組a[ ]存儲:
N=a[m]×10m-1+a[m-1]×10m-2+ … +a[2]×101+a[1]×100
並用a[0]存儲長整數N的位數m,即a[0]=m。按上述約定,數組的每個元素存儲k的階乘k!的一位數字,並從低位到高位依次存於數組的第二個元素、第三個元素……。例如,5!=120,在數組中的存儲形式為:
3 0 2 1 ……
首元素3表示長整數是一個3位數,接著是低位到高位依次是0、2、1,表示成整數120。
計算階乘k!可採用對已求得的階乘(k-1)!連續累加k-1次後求得。例如,已知4!=24,計算5!,可對原來的24累加4次24後得到120。細節見以下程序。
# include <stdio.h>
# include <malloc.h>
......
2.遞歸
遞歸是設計和描述演算法的一種有力的工具,由於它在復雜演算法的描述中被經常採用,為此在進一步介紹其他演算法設計方法之前先討論它。
能採用遞歸描述的演算法通常有這樣的特徵:為求解規模為N的問題,設法將它分解成規模較小的問題,然後從這些小問題的解方便地構造出大問題的解,並且這些規模較小的問題也能採用同樣的分解和綜合方法,分解成規模更小的問題,並從這些更小問題的解構造出規模較大問題的解。特別地,當規模N=1時,能直接得解。
【問題】 編寫計算斐波那契(Fibonacci)數列的第n項函數fib(n)。
斐波那契數列為:0、1、1、2、3、……,即:
fib(0)=0;
fib(1)=1;
fib(n)=fib(n-1)+fib(n-2) (當n>1時)。
寫成遞歸函數有:
int fib(int n)
{ if (n==0) return 0;
if (n==1) return 1;
if (n>1) return fib(n-1)+fib(n-2);
}
遞歸演算法的執行過程分遞推和回歸兩個階段。在遞推階段,把較復雜的問題(規模為n)的求解推到比原問題簡單一些的問題(規模小於n)的求解。例如上例中,求解fib(n),把它推到求解fib(n-1)和fib(n-2)。也就是說,為計算fib(n),必須先計算fib(n-1)和fib(n-2),而計算fib(n-1)和fib(n-2),又必須先計算fib(n-3)和fib(n-4)。依次類推,直至計算fib(1)和fib(0),分別能立即得到結果1和0。在遞推階段,必須要有終止遞歸的情況。例如在函數fib中,當n為1和0的情況。
在回歸階段,當獲得最簡單情況的解後,逐級返回,依次得到稍復雜問題的解,例如得到fib(1)和fib(0)後,返回得到fib(2)的結果,……,在得到了fib(n-1)和fib(n-2)的結果後,返回得到fib(n)的結果。
在編寫遞歸函數時要注意,函數中的局部變數和參數知識局限於當前調用層,當遞推進入「簡單問題」層時,原來層次上的參數和局部變數便被隱蔽起來。在一系列「簡單問題」層,它們各有自己的參數和局部變數。
由於遞歸引起一系列的函數調用,並且可能會有一系列的重復計算,遞歸演算法的執行效率相對較低。當某個遞歸演算法能較方便地轉換成遞推演算法時,通常按遞推演算法編寫程序。例如上例計算斐波那契數列的第n項的函數fib(n)應採用遞推演算法,即從斐波那契數列的前兩項出發,逐次由前兩項計算出下一項,直至計算出要求的第n項。
【問題】 組合問題
問題描述:找出從自然數1、2、……、n中任取r個數的所有組合。例如n=5,r=3的所有組合為: (1)5、4、3 (2)5、4、2 (3)5、4、1
(4)5、3、2 (5)5、3、1 (6)5、2、1
(7)4、3、2 (8)4、3、1 (9)4、2、1
(10)3、2、1
分析所列的10個組合,可以採用這樣的遞歸思想來考慮求組合函數的演算法。設函數為void comb(int m,int k)為找出從自然數1、2、……、m中任取k個數的所有組合。當組合的第一個數字選定時,其後的數字是從餘下的m-1個數中取k-1數的組合。這就將求m個數中取k個數的組合問題轉化成求m-1個數中取k-1個數的組合問題。設函數引入工作數組a[ ]存放求出的組合的數字,約定函數將確定的k個數字組合的第一個數字放在a[k]中,當一個組合求出後,才將a[ ]中的一個組合輸出。第一個數可以是m、m-1、……、k,函數將確定組合的第一個數字放入數組後,有兩種可能的選擇,因還未去頂組合的其餘元素,繼續遞歸去確定;或因已確定了組合的全部元素,輸出這個組合。細節見以下程序中的函數comb。
【程序】
# include <stdio.h>
# define MAXN 100
int a[MAXN];
void comb(int m,int k)
{ int i,j;
for (i=m;i>=k;i--)
{ a[k]=i;
if (k>1)
comb(i-1,k-1);
else
{ for (j=a[0];j>0;j--)
printf(「%4d」,a[j]);
printf(「\n」);
}
}
}
void main()
{ a[0]=3;
comb(5,3);
}
3.回溯法
回溯法也稱為試探法,該方法首先暫時放棄關於問題規模大小的限制,並將問題的候選解按某種順序逐一枚舉和檢驗。當發現當前候選解不可能是解時,就選擇下一個候選解;倘若當前候選解除了還不滿足問題規模要求外,滿足所有其他要求時,繼續擴大當前候選解的規模,並繼續試探。如果當前候選解滿足包括問題規模在內的所有要求時,該候選解就是問題的一個解。在回溯法中,放棄當前候選解,尋找下一個候選解的過程稱為回溯。擴大當前候選解的規模,以繼續試探的過程稱為向前試探。
【問題】 組合問題
問題描述:找出從自然數1,2,…,n中任取r個數的所有組合。
採用回溯法找問題的解,將找到的組合以從小到大順序存於a[0],a[1],…,a[r-1]中,組合的元素滿足以下性質:
(1) a[i+1]>a,後一個數字比前一個大;
(2) a-i<=n-r+1。
按回溯法的思想,找解過程可以敘述如下:
首先放棄組合數個數為r的條件,候選組合從只有一個數字1開始。因該候選解滿足除問題規模之外的全部條件,擴大其規模,並使其滿足上述條件(1),候選組合改為1,2。繼續這一過程,得到候選組合1,2,3。該候選解滿足包括問題規模在內的全部條件,因而是一個解。在該解的基礎上,選下一個候選解,因a[2]上的3調整為4,以及以後調整為5都滿足問題的全部要求,得到解1,2,4和1,2,5。由於對5不能再作調整,就要從a[2]回溯到a[1],這時,a[1]=2,可以調整為3,並向前試探,得到解1,3,4。重復上述向前試探和向後回溯,直至要從a[0]再回溯時,說明已經找完問題的全部解。按上述思想寫成程序如下:
【程序】
# define MAXN 100
int a[MAXN];
void comb(int m,int r)
{ int i,j;
i=0;
a=1;
do {
if (a-i<=m-r+1
{ if (i==r-1)
{ for (j=0;j<r;j++)
printf(「%4d」,a[j]);
printf(「\n」);
}
a++;
continue;
}
else
{ if (i==0)
return;
a[--i]++;
}
} while (1)
}
main()
{ comb(5,3);
}
4.貪婪法
貪婪法是一種不追求最優解,只希望得到較為滿意解的方法。貪婪法一般可以快速得到滿意的解,因為它省去了為找最優解要窮盡所有可能而必須耗費的大量時間。貪婪法常以當前情況為基礎作最優選擇,而不考慮各種可能的整體情況,所以貪婪法不要回溯。
例如平時購物找錢時,為使找回的零錢的硬幣數最少,不考慮找零錢的所有各種發表方案,而是從最大面值的幣種開始,按遞減的順序考慮各幣種,先盡量用大面值的幣種,當不足大面值幣種的金額時才去考慮下一種較小面值的幣種。這就是在使用貪婪法。這種方法在這里總是最優,是因為銀行對其發行的硬幣種類和硬幣面值的巧妙安排。如只有面值分別為1、5和11單位的硬幣,而希望找回總額為15單位的硬幣。按貪婪演算法,應找1個11單位面值的硬幣和4個1單位面值的硬幣,共找回5個硬幣。但最優的解應是3個5單位面值的硬幣。
【問題】 裝箱問題
問題描述:裝箱問題可簡述如下:設有編號為0、1、…、n-1的n種物品,體積分別為v0、v1、…、vn-1。將這n種物品裝到容量都為V的若干箱子里。約定這n種物品的體積均不超過V,即對於0≤i<n,有0<vi≤V。不同的裝箱方案所需要的箱子數目可能不同。裝箱問題要求使裝盡這n種物品的箱子數要少。
若考察將n種物品的集合分劃成n個或小於n個物品的所有子集,最優解就可以找到。但所有可能劃分的總數太大。對適當大的n,找出所有可能的劃分要花費的時間是無法承受的。為此,對裝箱問題採用非常簡單的近似演算法,即貪婪法。該演算法依次將物品放到它第一個能放進去的箱子中,該演算法雖不能保證找到最優解,但還是能找到非常好的解。不失一般性,設n件物品的體積是按從大到小排好序的,即有v0≥v1≥…≥vn-1。如不滿足上述要求,只要先對這n件物品按它們的體積從大到小排序,然後按排序結果對物品重新編號即可。裝箱演算法簡單描述如下:
{ 輸入箱子的容積;
輸入物品種數n;
按體積從大到小順序,輸入各物品的體積;
預置已用箱子鏈為空;
預置已用箱子計數器box_count為0;
for (i=0;i<n;i++)
{ 從已用的第一隻箱子開始順序尋找能放入物品i 的箱子j;
if (已用箱子都不能再放物品i)
{ 另用一個箱子,並將物品i放入該箱子;
box_count++;
}
else
將物品i放入箱子j;
}
}
上述演算法能求出需要的箱子數box_count,並能求出各箱子所裝物品。下面的例子說明該演算法不一定能找到最優解,設有6種物品,它們的體積分別為:60、45、35、20、20和20單位體積,箱子的容積為100個單位體積。按上述演算法計算,需三隻箱子,各箱子所裝物品分別為:第一隻箱子裝物品1、3;第二隻箱子裝物品2、4、5;第三隻箱子裝物品6。而最優解為兩只箱子,分別裝物品1、4、5和2、3、6。
若每隻箱子所裝物品用鏈表來表示,鏈表首結點指針存於一個結構中,結構記錄尚剩餘的空間量和該箱子所裝物品鏈表的首指針。另將全部箱子的信息也構成鏈表。以下是按以上演算法編寫的程序。
}
5.分治法
任何一個可以用計算機求解的問題所需的計算時間都與其規模N有關。問題的規模越小,越容易直接求解,解題所需的計算時間也越少。例如,對於n個元素的排序問題,當n=1時,不需任何計算;n=2時,只要作一次比較即可排好序;n=3時只要作3次比較即可,…。而當n較大時,問題就不那麼容易處理了。要想直接解決一個規模較大的問題,有時是相當困難的。
分治法的設計思想是,將一個難以直接解決的大問題,分割成一些規模較小的相同問題,以便各個擊破,分而治之。
如果原問題可分割成k個子問題(1<k≤n),且這些子問題都可解,並可利用這些子問題的解求出原問題的解,那麼這種分治法就是可行的。由分治法產生的子問題往往是原問題的較小模式,這就為使用遞歸技術提供了方便。在這種情況下,反復應用分治手段,可以使子問題與原問題類型一致而其規模卻不斷縮小,最終使子問題縮小到很容易直接求出其解。這自然導致遞歸過程的產生。分治與遞歸像一對孿生兄弟,經常同時應用在演算法設計之中,並由此產生許多高效演算法。
分治法所能解決的問題一般具有以下幾個特徵:
(1)該問題的規模縮小到一定的程度就可以容易地解決;
(2)該問題可以分解為若干個規模較小的相同問題,即該問題具有最優子結構性質;
(3)利用該問題分解出的子問題的解可以合並為該問題的解;
(4)該問題所分解出的各個子問題是相互獨立的,即子問題之間不包含公共的子子問題。
上述的第一條特徵是絕大多數問題都可以滿足的,因為問題的計算復雜性一般是隨著問題規模的增加而增加;第二條特徵是應用分治法的前提,它也是大多數問題可以滿足的,此特徵反映了遞歸思想的應用;第三條特徵是關鍵,能否利用分治法完全取決於問題是否具有第三條特徵,如果具備了第一條和第二條特徵,而不具備第三條特徵,則可以考慮貪心法或動態規劃法。第四條特徵涉及到分治法的效率,如果各子問題是不獨立的,則分治法要做許多不必要的工作,重復地解公共的子問題,此時雖然可用分治法,但一般用動態規劃法較好。
分治法在每一層遞歸上都有三個步驟:
(1)分解:將原問題分解為若干個規模較小,相互獨立,與原問題形式相同的子問題;
(2)解決:若子問題規模較小而容易被解決則直接解,否則遞歸地解各個子問題;
(3)合並:將各個子問題的解合並為原問題的解。
6.動態規劃法
經常會遇到復雜問題不能簡單地分解成幾個子問題,而會分解出一系列的子問題。簡單地採用把大問題分解成子問題,並綜合子問題的解導出大問題的解的方法,問題求解耗時會按問題規模呈冪級數增加。
為了節約重復求相同子問題的時間,引入一個數組,不管它們是否對最終解有用,把所有子問題的解存於該數組中,這就是動態規劃法所採用的基本方法。以下先用實例說明動態規劃方法的使用。
【問題】 求兩字元序列的最長公共字元子序列
問題描述:字元序列的子序列是指從給定字元序列中隨意地(不一定連續)去掉若干個字元(可能一個也不去掉)後所形成的字元序列。令給定的字元序列X=「x0,x1,…,xm-1」,序列Y=「y0,y1,…,yk-1」是X的子序列,存在X的一個嚴格遞增下標序列<i0,i1,…,ik-1>,使得對所有的j=0,1,…,k-1,有xij=yj。例如,X=「ABCBDAB」,Y=「BCDB」是X的一個子序列。
考慮最長公共子序列問題如何分解成子問題,設A=「a0,a1,…,am-1」,B=「b0,b1,…,bm-1」,並Z=「z0,z1,…,zk-1」為它們的最長公共子序列。不難證明有以下性質:

6. 物體的質量是如何計算的

質量是物理物體的一種屬性,也是衡量物體對加速度抵抗程度的指標。人們可以把一個物體的質量看作是組成該物體的物理「物質」的量。

例如,假設我們對一個金屬立方體施加748牛的力,我們測量它的加速度為21m/s2。這個金屬立方體的質量是多少?我們可以用力的大小除以加速度的大小來計算質量

m=F/a

m=(748N)/(21m/s2)≈35.62 kg

所以我們知道這個金屬立方體的質量一定是35.62千克。

從重量

嚴格地說,重量和質量是兩個不同的東西。在英語中,「重量」和「質量」是同義詞,但它們在物理科學中有不同的含義。質量是一個不變的屬性,不會因位置而改變。重量是作用在一個大質量物體上的引力場強度的量度。由於引力場強度是不同的,也就是說,月球的引力場強度比地球弱,物體的重量在不同的環境中也會不同。

質量和重量之間的關系由W = mg給出,其中g是重力加速度的測量值。g的准確值隨位置的不同而不同。在地球上,g的值約為9.81 m/s2,而在月球上,g約為1.6 m/s2。表達式W=mg以牛頓表示重量,而日常對重量的理解是以磅(磅)表示的,從牛頓到磅的換算率約為1 N=0.22磅。

例如,在g=9.81 m/s2的地球表面,一個50公斤的物體的重量是:

W=(50kg)(9.81m/s2)=490.5N

同樣地,如果我們知道一個物體的重量,我們就可以反過來算出它的質量。假設一個物體在地球上重180磅,我們可以這樣計算物體的質量:

180lbs(1N/0.22lbs)=818.18N

818.18N=m(9.81m/s2)

m=818.18N/(9.81m/s2)≈83.4 kg

所以一個180磅重的物體在地球上的質量大約是84.3千克。

7. 數學建模的十大演算法

1、蒙特卡羅演算法(該演算法又稱隨機性模擬演算法,是通過計算機模擬來解決問題的演算法,
同時可以通過模擬可以來檢驗自己模型的正確性,是比賽時必用的方法)
2、數據擬合、參數估計、插值等數據處理演算法(比賽中通常會遇到大量的數據需要處理,
而處理數據的關鍵就在於這些演算法,通常使用Matlab作為工具)
3、線性規劃、整數規劃、多元規劃、二次規劃等規劃類問題(建模競賽大多數問題屬於最優化問題,
很多時候這些問題可以用數學規劃演算法來描述,通常使用Lindo、Lingo軟體實現)
4、圖論演算法(這類演算法可以分為很多種,包括最短路、網路流、二分圖等演算法,
涉及到圖論的問題可以用這些方法解決,需要認真准備)
5、動態規劃、回溯搜索、分治演算法、分支定界等計算機演算法(這些演算法是演算法設計中比較常用的方法,很多場合可以用到競賽中)
6、最優化理論的三大非經典演算法:模擬退火法、神經網路、遺傳演算法
(這些問題是用來解決一些較困難的最優化問題的演算法,對於有些問題非常有幫助,
但是演算法的實現比較困難,需慎重使用)
7、網格演算法和窮舉法(網格演算法和窮舉法都是暴力搜索最優點的演算法,在很多競賽題中有應用,
當重點討論模型本身而輕視演算法的時候,可以使用這種暴力方案,最好使用一些高級語言作為編程工具)
8、一些連續離散化方法(很多問題都是實際來的,數據可以是連續的,而計算機只認的是離散的數據,因此將其離散化後進行差分代替微分、求和代替積分等思想是非常重要的)
9、數值分析演算法(如果在比賽中採用高級語言進行編程的話,那一些數值分析中常用的演算法比
如方程組求解、矩陣運算、函數積分等演算法就需要額外編寫庫函數進行調用)
10、圖象處理演算法(賽題中有一類問題與圖形有關,即使與圖形無關,論文中也應該要不乏圖片的,
這些圖形如何展示以及如何處理就是需要解決的問題,通常使用Matlab進行處理)

8. 數學的各種演算法

演算法(Algorithm)是指解題方案的准確而完整的描述,是一系列解決問題的清晰指令,演算法代表著用系統的方法描述解決問題的策略機制。也就是說,能夠對一定規范的輸入,在有限時間內獲得所要求的輸出。如果一個演算法有缺陷,或不適合於某個問題,執行這個演算法將不會解決這個問題。不同的演算法可能用不同的時間、空間或效率來完成同樣的任務。一個演算法的優劣可以用空間復雜度與時間復雜度來衡量。
演算法中的指令描述的是一個計算,當其運行時能從一個初始狀態和(可能為空的)初始輸入開始,經過一系列有限而清晰定義的狀態,最終產生輸出並停止於一個終態。一個狀態到另一個狀態的轉移不一定是確定的。隨機化演算法在內的一些演算法,包含了一些隨機輸入。
形式化演算法的概念部分源自嘗試解決希爾伯特提出的判定問題,並在其後嘗試定義有效計算性或者有效方法中成形。這些嘗試包括庫爾特·哥德爾、Jacques Herbrand和斯蒂芬·科爾·克萊尼分別於1930年、1934年和1935年提出的遞歸函數,阿隆佐·邱奇於1936年提出的λ演算,1936年Emil Leon Post的Formulation 1和艾倫·圖靈1937年提出的圖靈機。即使在當前,依然常有直覺想法難以定義為形式化演算法的情況。
一個演算法應該具有以下五個重要的特徵:
有窮性
(Finiteness)
演算法的有窮性是指演算法必須能在執行有限個步驟之後終止;
確切性
(Definiteness)
演算法的每一步驟必須有確切的定義;
輸入項
(Input)
一個演算法有0個或多個輸入,以刻畫運算對象的初始情況,所謂0個輸入是指演算法本身定出了初始條件;
輸出項
(Output)
一個演算法有一個或多個輸出,以反映對輸入數據加工後的結果。沒有輸出的演算法是毫無意義的;
可行性
(Effectiveness)
演算法中執行的任何計算步驟都是可以被分解為基本的可執行的操作步,即每個計算步都可以在有限時間內完成(也稱之為有效性)。
一、數據對象的運算和操作:計算機可以執行的基本操作是以指令的形式描述的。一個計算機系統能執行的所有指令的集合,成為該計算機系統的指令系統。一個計算機的基本運算和操作有如下四類:[1]
1.算術運算:加減乘除等運算
2.邏輯運算:或、且、非等運算
3.關系運算:大於、小於、等於、不等於等運算
4.數據傳輸:輸入、輸出、賦值等運算[1]
二、演算法的控制結構:一個演算法的功能結構不僅取決於所選用的操作,而且還與各操作之間的執行順序有關。
演算法可大致分為基本演算法、數據結構的演算法、數論與代數演算法、計算幾何的演算法、圖論的演算法、動態規劃以及數值分析、加密演算法、排序演算法、檢索演算法、隨機化演算法、並行演算法,厄米變形模型,隨機森林演算法。
演算法可以宏泛地分為三類:
一、有限的,確定性演算法 這類演算法在有限的一段時間內終止。他們可能要花很長時間來執行指定的任務,但仍將在一定的時間內終止。這類演算法得出的結果常取決於輸入值。
二、有限的,非確定演算法 這類演算法在有限的時間內終止。然而,對於一個(或一些)給定的數值,演算法的結果並不是唯一的或確定的。
三、無限的演算法 是那些由於沒有定義終止定義條件,或定義的條件無法由輸入的數據滿足而不終止運行的演算法。通常,無限演算法的產生是由於未能確定的定義終止條件。
希望我能幫助你解疑釋惑。

熱點內容
人間地獄為什麼沒有伺服器 發布:2025-01-18 05:20:07 瀏覽:442
c語言編譯器的版權 發布:2025-01-18 05:13:37 瀏覽:296
htmlbase64圖片上傳 發布:2025-01-18 05:13:03 瀏覽:19
微信小程序源碼目錄 發布:2025-01-18 05:08:51 瀏覽:679
投影儀什麼配置好 發布:2025-01-18 05:01:46 瀏覽:56
傾城密碼有什麼蛋糕 發布:2025-01-18 05:00:35 瀏覽:413
安卓應用鎖是什麼意思 發布:2025-01-18 04:59:57 瀏覽:908
mfc數據存儲 發布:2025-01-18 04:59:05 瀏覽:570
今日頭條as演算法 發布:2025-01-18 04:53:05 瀏覽:6
設置js緩存時間 發布:2025-01-18 04:43:44 瀏覽:512