資料庫隔離
『壹』 什麼是信息系統和資料庫的物理隔離
資料庫的伺服器和信息系統的伺服器物理上是隔離的,不在同一伺服器,同一網段。
『貳』 怎麼查看資料庫隔離級別
修改方法
有兩種方法可以對配置了 systemd 的程序進行資源隔離:1. 命令行修改:通過執行systemctl set-property命令實現,形式為systemctl set-propertyname parameter=value;修改默認即時生效。2. 手工修改文件:直接編輯程序的 systemd unit file 文件,完成之後需手工執行systemctldaemon-reload更新配置,並重啟服務systemctl restart name.service。
systemd unit file 里支持的資源隔離配置項,如常見的:
CPUQuota=value
該參數表示服務可以獲取的最大 CPU 時間,value 為百分數形式,高於 100% 表示可使用1 核以上的CPU。與 cgroup cpu 控制器cpu.cfs_quota_us配置項對應。
MemoryLimit=value
該參數表示服務可以使用的最大內存量,value 可以使用 K, M, G, T 等後綴表示值的大小。與 cgroupmemory 控制器memory.limit_in_bytes配置項對應。
事務的4種隔離級別
READ UNCOMMITTED 未提交讀,可以讀取未提交的數據。
READ COMMITTED 已提交讀,對於鎖定讀(select with for update 或者 for share)、update 和 delete 語句,InnoDB 僅鎖定索引記錄,而不鎖定它們之間的間隙,因此允許在鎖定的記錄旁邊自由插入新記錄。
Gap locking 僅用於外鍵約束檢查和重復鍵檢查。
REPEATABLE READ 可重復讀,事務中的一致性讀取讀取的是事務第一次讀取所建立的快照。
SERIALIZABLE 序列化在了解了 4 種隔離級別的需求後,在採用鎖控制隔離級別的基礎上,我們需要了解加鎖的對象(數據本身&間隙),以及了解整個數據范圍的全集組成。
數據范圍全集組成
sql 語句根據條件判斷不需要掃描的數據范圍(不加鎖);
SQL 語句根據條件掃描到的可能需要加鎖的數據范圍;
以單個數據范圍為例,數據范圍全集包含:(數據范圍不一定是連續的值,也可能是間隔的值組成)
『叄』 資料庫事務隔離級別 一般用哪個
術式之後皆為邏輯,一切皆為需求和實現。希望此文能從需求、現狀和解決方式的角度幫大家理解隔離級別。
隔離級別的產生
在串型執行的條件下,數據修改的順序是固定的、可預期的結果,但是並發執行的情況下,數據的修改是不可預期的,也不固定,為了實現數據修改在並發執行的情況下得到一個固定、可預期的結果,由此產生了隔離級別。
所以隔離級別的作用是用來平衡資料庫並發訪問與數據一致性的方法。
事務的4種隔離級別
READ UNCOMMITTED 未提交讀,可以讀取未提交的數據。READ COMMITTED 已提交讀,對於鎖定讀(select with for update 或者 for share)、update 和 delete 語句, InnoDB 僅鎖定索引記錄,而不鎖定它們之間的間隙,因此允許在鎖定的記錄旁邊自由插入新記錄。 Gap locking 僅用於外鍵約束檢查和重復鍵檢查。REPEATABLE READ 可重復讀,事務中的一致性讀取讀取的是事務第一次讀取所建立的快照。SERIALIZABLE 序列化
在了解了 4 種隔離級別的需求後,在採用鎖控制隔離級別的基礎上,我們需要了解加鎖的對象(數據本身&間隙),以及了解整個數據范圍的全集組成。
數據范圍全集組成
SQL 語句根據條件判斷不需要掃描的數據范圍(不加鎖);
SQL 語句根據條件掃描到的可能需要加鎖的數據范圍;
以單個數據范圍為例,數據范圍全集包含:(數據范圍不一定是連續的值,也可能是間隔的值組成)
1. 數據已經填充了整個數據范圍:(被完全填充的數據范圍,不存在數據間隙)
整形,對值具有唯一約束條件的數據范圍 1~5 ,
已有數據1、2、3、4、5,此時數據范圍已被完全填充;
整形,對值具有唯一約束條件的數據范圍 1 和 5 ,
已有數據1、5,此時數據范圍已被完全填充;
整形的數據范圍 1~5 ,
已有數據 1、2、3、4、5,但是因為沒有唯一約束,
所以數據范圍可以繼續被 1~5 的數據重復填充;
整形,具有唯一約束條件的數據范圍 1~5 ,
已有數據 2,5,此時數據范圍未被完全填充,還可以填充 1、3、4 ;
整形的數據范圍 1~5 ,數據范圍內當前沒有任何數據。
更新丟失:當多個事務選擇了同一行,然後基於最初選定的值更新該行時,
由於每個事物不知道其他事務的存在,最後的更新就會覆蓋其他事務所做的更新;
臟讀: 一個事務正在對一條記錄做修改,這個事務完成並提交前,這條記錄就處於不一致狀態。
這時,另外一個事務也來讀取同一條記錄,如果不加控制,
第二個事務讀取了這些「臟」數據,並據此做了進一步的處理,就會產生提交的數據依賴關系。
這種現象就叫「臟讀」。
不可重復讀:一個事務在讀取某些數據後的某個時間,再次讀取以前讀過的數據,
卻發現其讀出的數據已經發生了改變,或者某些記錄已經被刪除了。
這種現象就叫「不可重復讀」。
幻讀:一個事務按相同的查詢條件重新讀取以前檢索過的數據,
卻發現其他事務插入了滿足其查詢條件的新數據,這種現象稱為「幻讀」。
可以簡單的認為滿足條件的數據量變化了。
Record Locks
索引記錄鎖,索引記錄鎖始終鎖定索引記錄,即使表中未定義索引,
這種情況下,InnoDB 創建一個隱藏的聚簇索引,並使用該索引進行記錄鎖定。
Gap Locks
間隙鎖是索引記錄之間的間隙上的鎖,或者對第一條記錄之前或者最後一條記錄之後的鎖。
間隙鎖是性能和並發之間權衡的一部分。
對於無間隙的數據范圍不需要間隙鎖,因為沒有間隙。
Next-Key Locks
索引記錄上的記錄鎖和索引記錄之前的 gap lock 的組合。
假設索引包含 10、11、13 和 20。
可能的next-key locks包括以下間隔,其中圓括弧表示不包含間隔端點,方括弧表示包含端點:
(負無窮大, 10] (10, 11] (11, 13] (13, 20] (20, 正無窮大) 對於最後一個間隔,next-key將會鎖定索引中最大值的上方,
2. 數據填充了部分數據范圍:(未被完全填充的數據范圍,是存在數據間隙)
3. 數據范圍內沒有任何數據(存在間隙)
如下:
在了解了數據全集的組成後,我們再來看看事務並發時,會帶來的問題。
無控制的並發所帶來的問題
並發事務如果不加以控制的話會帶來一些問題,主要包括以下幾種情況。
1. 范圍內已有數據更改導致的:
2. 范圍內數據量發生了變化導致:
因為無控制的並發會帶來一系列的問題,這些問題會導致無法滿足我們所需要的結果。因此我們需要控制並發,以實現我們所期望的結果(隔離級別)。
MySQL 隔離級別的實現
InnoDB 通過加鎖的策略來支持這些隔離級別。
行鎖包含:
左右滑動進行查看
"上確界"偽記錄的值高於索引中任何實際值。
上確界不是一個真正的索引記錄,因此,實際上,這個 next-key 只鎖定最大索引值之後的間隙。
基於此,當獲取的數據范圍中,數據已填充了所有的數據范圍,那麼此時是不存在間隙的,也就不需要 gap lock。
對於數據范圍內存在間隙的,需要根據隔離級別確認是否對間隙加鎖。
默認的 REPEATABLE READ 隔離級別,為了保證可重復讀,除了對數據本身加鎖以外,還需要對數據間隙加鎖。
READ COMMITTED 已提交讀,不匹配行的記錄鎖在 MySQL 評估了 where 條件後釋放。
對於 update 語句,InnoDB 執行 "semi-consistent" 讀取,這樣它會將最新提交的版本返回到 MySQL,
以便 MySQL 可以確定該行是否與 update 的 where 條件相匹配。
總結&延展:
唯一索引存在唯一約束,所以變更後的數據若違反了唯一約束的原則,則會失敗。
當 where 條件使用二級索引篩選數據時,會對二級索引命中的條目和對應的聚簇索引都加鎖;所以其他事務變更命中加鎖的聚簇索引時,都會等待鎖。
行鎖的增加是一行一行增加的,所以可能導致並發情況下死鎖的發生。
例如,
在 session A 對符合條件的某聚簇索引加鎖時,可能 session B 已持有該聚簇索引的 Record Locks,而 session B 正在等待 session A 已持有的某聚簇索引的 Record Locks。
session A 和 session B 是通過兩個不相乾的二級索引定位到的聚簇索引。
session A 通過索引 idA,session B通過索引 idB 。
當 where 條件獲取的數據無間隙時,無論隔離級別為 rc 或 rr,都不會存在間隙鎖。
比如通過唯一索引獲取到了已完全填充的數據范圍,此時不需要間隙鎖。
間隙鎖的目的在於阻止數據插入間隙,所以無論是通過 insert 或 update 變更導致的間隙內數據的存在,都會被阻止。
rc 隔離級別模式下,查詢和索引掃描將禁用 gap locking,此時 gap locking 僅用於外鍵約束檢查和重復鍵檢查(主要是唯一性檢查)。
rr 模式下,為了防止幻讀,會加上 Gap Locks。
事務中,SQL 開始則加鎖,事務結束才釋放鎖。
就鎖類型而言,應該有優化鎖,鎖升級等,例如rr模式未使用索引查詢的情況下,是否可以直接升級為表鎖。
就鎖的應用場景而言,在回放場景中,如果確定事務可並發,則可以考慮不加鎖,加快回放速度。
鎖只是並發控制的一種粒度,只是一個很小的部分:
從不同場景下是否需要控制並發,(已知無交集且有序的數據的變更,MySQL 的 MTS 相同前置事務的多事務並發回放)
並發控制的粒度,(鎖是一種邏輯粒度,可能還存在物理層和其他邏輯粒度或方式)
相同粒度下的優化,(鎖本身存在優化,如IX、IS類型的優化鎖)
粒度載入的安全&性能(如獲取行鎖前,先獲取頁鎖,頁鎖在執行獲取行鎖操作後即釋放,無論是否獲取成功)等多個層次去思考並發這玩意。
『肆』 資料庫哪個隔離級別可以實現臟讀
對於同時運行的多個事務, 當這些事務訪問資料庫中相同的數據時, 如果沒有採取必要的隔離機制, 就會導致各種並發問題:
• 臟讀: 對於兩個事物 T1, T2, T1 讀取了已經被 T2 更新但還沒有被提交的欄位. 之後, 若 T2 回滾, T1讀取的內容就是臨時且無效的.
• 不可重復讀: 對於兩個事物 T1, T2, T1 讀取了一個欄位, 然後 T2 更新了該欄位. 之後, T1再次讀取同一個欄位, 值就不同了.
• 幻讀: 對於兩個事物 T1, T2, T1 從一個表中讀取了一個欄位, 然後 T2 在該表中插入了一些新的行. 之後, 如果 T1 再次讀取同一個表, 就會多出幾行.
資料庫事務的隔離性: 資料庫系統必須具有隔離並發運行各個事務的能力, 使它們不會相互影響, 避免各種並發問題.
一個事務與其他事務隔離的程度稱為隔離級別. 資料庫規定了多種事務隔離級別, 不同隔離級別對應不同的干擾程度, 隔離級別越高, 數據一致性就越好, 但並發性越弱
資料庫提供了4中隔離級別:
隔離級別 描述
READ UNCOMMITTED(讀未提交數據) 允許事務讀取未被其他事務提交的變更,臟讀、不可重復讀和幻讀的問題都會出現
READ COMMITED(讀已提交數據) 只允許事務讀取已經被其他事務提交的變更,可以避免臟讀,但不可重復讀和幻讀問題仍然會出現
REPEATABLE READ(可重復讀) 確保事務可以多次從一個欄位中讀取相同的值,在這個事務持續期間,禁止其他事務對這個欄位進行更新,可以避免臟讀和不可重復讀,但幻讀的問題依然存在
SERIALIZABLE(串列化) 確保事務可以從一個表中讀取相同的行,在這個事務持續期間,禁止其他事務對該表執行插入、更新和刪除操作,所有並發問題都可以避免,但性能十分低
Oracle 支持的 2 種事務隔離級別:READ COMMITED, SERIALIZABLE. Oracle 默認的事務隔離級別為: READ COMMITED
Mysql 支持 4 中事務隔離級別. Mysql 默認的事務隔離級別為: REPEATABLE READ
『伍』 用sql資料庫做個小程序,實現數據隔離,怎麼控制
看了你的需求,首頁區分下概念,分清哪些是資料庫中的設置的,哪些是在程序中設置的。
第一個問題:
連接資料庫時的登錄名:就是登陸Sql Server的賬號(sa為默認的最高許可權);在sql中稱為登陸名,可以在sql中新建登陸名,該登陸名可以設置sql的登陸許可權,在新建登陸名時用戶映射中,設置該登陸名可以訪問的資料庫名。登陸名包含了登陸許可權(就是獲取資料庫許可權的用戶名)。登陸名下包含了伺服器角色(批處理許可權的角色)信息,一般有sysadmin(sa)、public(新建的、默認)等。
上述用戶是sql中設置的信息,與程序無關。而程序使用的登陸用戶名是在sql中新建一個資料庫(AA),然後在資料庫中在新建一張用戶表(User),即你所說的用戶表包含了序號(ID)、用戶名(UID)、密碼(PWD)、身份(LOGIN)4個欄位。程序的登陸名只是User表中的一個欄位(UID)。
第二個問題:
首要要更正你的觀點,既然是程序裡面要在登陸時要實現不同的身份查看不同的數據,那麼所有的問題都由程序來做,與資料庫無關。只不過在資料庫AA里建立不同的表,存放不同的數據。因此總體設計如下:
1、建立sql資料庫連接登陸名,只需要一個,用默認的sa也可以
2、建立資料庫AA
3、建立各數據表。包括User表,User表中的用戶名(UID)即程序登陸用戶名
程序設計
4、程序建立與sql server的連接(即用1中新建的,sa也可以)
5、製作登陸驗證程序。首頁驗證UID與PWD是否匹配,其次根據不同的LOGIN跳轉不同的界面
6、在各自不同的界面調用所需要的數據
希望你能看明白!
『陸』 Navicat怎樣設置資料庫隔離級別
1.查看當前會話隔離級別
select @@tx_isolation;
2.查看系統當前隔離級別
select @@global.tx_isolation;
3.設置當前會話隔離級別
set session transaction isolatin level repeatable read;
4.設置系統當前隔離級別
set global transaction isolation level repeatable read;
5.命令行,開始事務時
set autocommit=off 或者 start transaction
關於隔離級別的理解
『柒』 資料庫的隔離級別
第四步的值為 0 第六步為100 第三步雖然更新了,但是沒有提交,還沒有寫入資料庫,所以第三步查詢的,仍為資料庫的原值。第五步做了一次提交 ,會把值寫入資料庫,查詢出來為更新值。 多線程的話就不一定了,可能出現臟讀的現象。既然有提交的話,就得看線程的優先順序別了。如果優先順序別一樣的話,就得看運氣咯。 總而言之 如果更新提交後,另外一個線程才執行查詢的話,肯定會查處更新後的值。如果只執行到更新,另一個線程執行了查詢的話,就會出現臟讀
『捌』 oracle 資料庫隔離級別學習
oracle
事務隔離級別
事務不同引發的狀況:
臟讀(Dirty
reads)
一個事務讀取另一個事務尚未提交的修改時,產生臟讀
很多資料庫允許臟讀以避免排它鎖的競爭。
不可重復讀(Nonrepeatable
reads)
同一查詢在同一事務中多次進行,由於其他提交事務所做的修改或刪除,每次返回不同的結果集,此時發生非重復讀。
幻讀(Phantom
reads)
同一查詢在同一事務中多次進行,由於其他提交事務所做的插入操作,每次返回不同的結果集,此時發生幻像讀。
資料庫操作的隔離級別
未提交讀(read
uncommitted)
提交讀(read
committed)
重復讀(repeatable
read)
序列化(serializable)
oracle默認隔離級別read
committed
(statement
level
serialization)
每一個語句,在語句開始時,會獲取一個此刻的數據快照。
一個事務有多條語句,如果語句之間存在其它完成的事務,這可能引起不可持續讀和幻讀。
新建一個測試表books:
name,code,price三個欄位
添加兩條測試數據
使用pl/sql和java程序模擬並發
不允許臟讀測試:
程序段首先查詢code是qqq的書的價格
復制代碼
代碼如下:
//獲取連接
省略
pstat
=
conn.prepareStatement("select
price
from
books
where
code='qqq'");
rs
=
pstat.executeQuery();
while(rs.next()){
System.out.println("price:"+rs.getDouble(1));
}
close();
輸出結果:price:15.0
然後pl/sql執行更新
復制代碼
代碼如下:
update
books
set
price=18
where
code='qqq'
!pl/sql設置成手動更新,不自動更新
在執行上面java查詢代碼
輸出仍是price:15.0,說明讀不到pl/sql中未提交的執行結果,即不允許臟讀
pl/sql
執行
commit;
在執行java查詢:
輸出結果:price:18.0
會有不可重復讀何幻讀的現象發生就不用測試了吧,
這兩種現象都是針對提交後事物的讀引起的,read
commited隔離級別是允許對提交後
的事物進行讀的。
隔離級別:重復讀(repeatable
read)
這個不允許臟讀,不可重復讀,但是會有幻讀現象。
這個oracle不支持,不好測試。
理解的話就是如果一條查詢語句查詢的內容有其它事物正在更新的時候,這
查詢處於等待狀態,直到先前事物提交更新後,才會執行本條查詢。也就是
查詢的時候也會有鎖,需要等待並發的事物釋放鎖。然後自己獲取到鎖,執行
自己事物。這樣查詢也加鎖,並發性更低
select
...
for
update
就是這樣可以避免不可重復讀的發生
隔離級別:serializable
這個就更嚴格了,事物執行是一個一個的。一個事務中的語句共享同一個數據快照(在事務開始時存在的數據)。
是事物級別的,臟讀,不可重復讀,幻讀根本就沒有機會發生。
前面像read
committed都是語句級別的,以語句為單元。
比如
read
committed一個事物A有a(select),b(select),c(update)三條語句
當A事物執行a,b的時候,若有B事物執行更新操作,是有可能的
因為a,b是不加鎖的
例子:
復制代碼
代碼如下:
//獲取連接和關閉連接代碼
省略
//不自動提交
conn.setAutoCommit(false);
/**
*
a
查詢
*/
pstat
=
conn.prepareStatement("select
price
from
books
where
code='qqq'");
rs
=
pstat.executeQuery();
while(rs.next()){
//輸出
price:25.0
System.out.println("price:"+rs.getDouble(1));
}
close();
/**
*
暫停一會,用pl/sql執行B事務
*
update
books
set
price=15
where
code='qqq'
*
commit;
*/
Thread.sleep(10000);
/**
*
如果這里再執行a查詢的話,和第一次查詢結果就不一樣,因為中間有B事務的提交更新
*
修改,這也是不可重復讀
*/
//b
更新
pstat
=
conn.prepareStatement("update
books
set
price=price+10
where
code='qqq'");
pstat.executeUpdate();
close();
//c
查詢
pstat
=
conn.prepareStatement("select
price
from
books
where
code='qqq'");
rs
=
pstat.executeQuery();
while(rs.next()){
//輸出
還是price:25.0
,因為B事務的干預
System.out.println("price:"+rs.getDouble(1));
}
close();
//提交事務
conn.commit();
if(conn
!=
null){
conn.close();
}
上面執行的順序,事務B是在A的執行過程中執行的。
以上通過實例介紹了oracle資料庫隔離級別的相關內容,希望對大家有所幫助。
下面是一些補充:
資料庫中的事務基本作用是將資料庫從一致狀態轉換到另一種一致狀態,那麼事務隔離級別就是定義了一個事務對於另外一個事務做出的修改有多「敏感」。也就是不同的隔離級別定義了事務相互影響的程度,下面分別介紹一下幾種不同的隔離級別。
1.
READ
UNCOMMITTED
其實,oracle不支持這種隔離級別。這種隔離級別允許臟讀(也就是可以讀取到用戶未提交的數據),支持這種隔離級別的資料庫主要是為了支持非阻塞讀,但是oracle默認支持非阻塞讀,所以oracle裡面不支持這種隔離級別。下面舉一個例子:
如上圖所示,假設某一家銀行要統計所有賬號總共有多少金額。事務A負責統計,事務A從第一行開始讀取。假設讀取到100行的時候,事務B從賬號123轉了400元到賬戶987(事務B還未提交),支持臟讀的資料庫當事務A讀取到342023行的時候,就會得到500元,從而多加了400元。
2.
READ
COMMITTED
這種隔離級別指的是,事務只能讀取已經提交的數據,(但是支持可重復讀與幻想讀)是oracle資料庫默認的隔離模式。其實這種隔離級別在別的資料庫裡面可能還是會「退化」得像臟讀一樣。就看前面那個例子,假設在事務A讀取到342023行前,事務B提前鎖定了這一行,並將金額由100改成了500。那麼事務A讀取到這一行的時候,發現已經被其他事務鎖定了,於是進行等待,直到事務B提交。但是當事務B提交之後,事務A還是讀取到了500這一個錯誤信息,這樣就和臟讀一樣的了,而且還讓用戶等待這個錯誤的答案。
3.
REPEATABLE
READ
這種隔離級別不支持臟讀,不支持可重復讀,支持幻想讀。主要是為了得到一致性的答案與防止丟失更新。
a.
得到一致性答案
在oracle裡面這個通過多版本機製得到了實現,但是在其他的資料庫需要通過加鎖機制進行控制,就以上一個例子為例,怎樣才能統計出正確的總金額呢,事務A在讀取每一行的時候,給每一行加上共享讀鎖,這樣當事務B執行從賬號123轉400元到賬戶987的時候。先是操作第一行將賬戶123的金額由500修改成100,但是第一行已經被事務A鎖定,於是等待,這樣事務A能夠讀取到正確的數據。但是如果事務B執行的操作是從賬戶987轉50元到賬戶123的時候,事務B先操作第342023行,發現沒有被鎖定,於是鎖定將金額由100修改成50,然後操作第一行,發現鎖定了於是等待。而事務A讀取到342023行的時候,發現這一行已經被事務B鎖定於是等待,這樣就陷入了死鎖。
b.
丟失更新
在採用共享讀鎖的資料庫中,這種隔離級別可以防止丟失更新,比如事務1先讀取了第A行然後修改了這一行的C列(其他列也修改了只是值還和以前一樣,因為程序員都是整行的更新)。這個時候事務2想也想修改A行的時候會被阻塞,防止事務1的更新被覆蓋。
4.
SEAIALIZABLE
不允許臟讀,重復讀與幻想讀,最高的隔離級別。這種隔離級別標明事務A在操作資料庫的時候好像就只有事務A在操作,沒有其他事務在操作資料庫一樣。
Oracle
中是這樣實現
SERIALIZABLE
事務的:原本通常在語句級得到的讀一致性現在可以擴展到事務級。也就是在事務執行的那一刻,將這個事務將要操作的數據拍了一張照片。
從上面的例子我們可以看出,其他資料庫採用共享讀鎖來解決統計總金額問題是沒有oracle多版本機制靈活的,其一嚴重影響了程序的並發性,讀阻塞了寫。其二可能引起死鎖。
『玖』 資料庫的隔離級別:「可重復讀」的誤區
第一步:開始事務1,並進行查詢
此時d的值還是45d。
證明你的結論1正確
『拾』 我們公司一個系統平台,資料庫用的Mysql,為保障數據隔離每個客戶都是一個資料庫
分配資料庫的時候 需要制定資料庫的 初始空間大小,和之後的增長的比例。Oracle 有表空間的概念,可以通過sql語句查詢剩餘空間,mysql 復雜些,具體的方法,可以上網搜搜。