網路擁塞控制演算法
① 在TCP的擁塞控制中,什麼是慢開始、擁塞避免、快重傳和快恢復演算法
慢開始:在主機剛剛開始發送報文段時可先將擁塞窗口cwnd設置為一個最大報文段MSS的數值。在每收到一個對新的報文段的確認後,將擁塞窗口增加至多一個MSS的數值。
擁塞避免:當擁塞窗口值大於慢開始門限時,停止使用慢開始演算法而改用擁塞避免演算法。
快重傳演算法:發送端只要一連收到三個重復的ACK即可斷定有分組丟失了,就應該立即重傳丟手的報文段而不必繼續等待為該報文段設置的重傳計時器的超時。
接下來執行的不是慢啟動演算法而是擁塞避免演算法。這就是快速恢復演算法。.
防止擁塞的方法
(1)在傳輸層可採用:重傳策略、亂序緩存策略、確認策略、流控制策略和確定超時策略。
(2)在網路層可採用:子網內部的虛電路與數據報策略、分組排隊和服務策略、分組丟棄策略、路由演算法和分組生存管理。
(3)在數據鏈路層可採用:重傳策略、亂序緩存策略、確認策略和流控制策略。
② 計算機網路,傳輸層擁塞控制小問題。謝謝。 假設在沒有發生擁塞的情況下,在一條往返時延RTT為10m
擁塞窗口初始值=1個TCP報文= 2 K B < 24 K B =2KB<24KB=2KB<24KB,發送窗口=min{擁塞窗口,接收窗口},採用慢啟動演算法:
T=0,第1次發送,發送窗口=擁塞窗口=2KB;
t=10ms,得到確認,擁塞窗口=4KB
T=10ms,第2次發送,發送窗口=4KB;
t=20ms,得到確認,擁塞窗口=8KB
T=20ms,第3次發送,發送窗口=8KB;
t=30ms,得到確認,擁塞窗口=16KB
T=30ms,第4次發送,發送窗口=16KB;
t=40ms,得到確認,擁塞窗口=32KB
T=40ms,第5次發送,發送窗口=min{擁塞窗口,接收窗口}=24KB;
因此,需要40ms才能發送第一個完全窗口。
③ 常見的tcp擁塞控制有哪幾種演算法
慢啟動:最初的TCP在連接建立成功後會向網路中發送大量的數據包,這樣很容易導致網路中路由器緩存空間耗盡,從而發生擁塞。因此新建立的連接不能夠一開始就大量發送數據包,而只能根據網路情況逐步增加每次發送的數據量,以避免上述現象的發生。具體來說,當新建連接時,cwnd初始化為1個最大報文段(MSS)大小,發送端開始按照擁塞窗口大小發送數據,每當有一個報文段被確認,cwnd就增加1個MSS大小。這樣cwnd的值就隨著網路往返時間(Round Trip Time,RTT)呈指數級增長,事實上,慢啟動的速度一點也不慢,只是它的起點比較低一點而已。我們可以簡單計算下:
開始 ---> cwnd = 1
經過1個RTT後 ---> cwnd = 2*1 = 2
經過2個RTT後 ---> cwnd = 2*2= 4
經過3個RTT後 ---> cwnd = 4*2 = 8
如果帶寬為W,那麼經過RTT*log2W時間就可以占滿帶寬。
擁塞避免:從慢啟動可以看到,cwnd可以很快的增長上來,從而最大程度利用網路帶寬資源,但是cwnd不能一直這樣無限增長下去,一定需要某個限制。TCP使用了一個叫慢啟動門限(ssthresh)的變數,當cwnd超過該值後,慢啟動過程結束,進入擁塞避免階段。對於大多數TCP實現來說,ssthresh的值是65536(同樣以位元組計算)。擁塞避免的主要思想是加法增大,也就是cwnd的值不再指數級往上升,開始加法增加。此時當窗口中所有的報文段都被確認時,cwnd的大小加1,cwnd的值就隨著RTT開始線性增加,這樣就可以避免增長過快導致網路擁塞,慢慢的增加調整到網路的最佳值。
上面討論的兩個機制都是沒有檢測到擁塞的情況下的行為,那麼當發現擁塞了cwnd又該怎樣去調整呢?
首先來看TCP是如何確定網路進入了擁塞狀態的,TCP認為網路擁塞的主要依據是它重傳了一個報文段。上面提到過,TCP對每一個報文段都有一個定時器,稱為重傳定時器(RTO),當RTO超時且還沒有得到數據確認,那麼TCP就會對該報文段進行重傳,當發生超時時,那麼出現擁塞的可能性就很大,某個報文段可能在網路中某處丟失,並且後續的報文段也沒有了消息,在這種情況下,TCP反應比較「強烈」:
1.把ssthresh降低為cwnd值的一半
2.把cwnd重新設置為1
3.重新進入慢啟動過程。
從整體上來講,TCP擁塞控制窗口變化的原則是AIMD原則,即加法增大、乘法減小。可以看出TCP的該原則可以較好地保證流之間的公平性,因為一旦出現丟包,那麼立即減半退避,可以給其他新建的流留有足夠的空間,從而保證整個的公平性。
其實TCP還有一種情況會進行重傳:那就是收到3個相同的ACK。TCP在收到亂序到達包時就會立即發送ACK,TCP利用3個相同的ACK來判定數據包的丟失,此時進行快速重傳,快速重傳做的事情有:
1.把ssthresh設置為cwnd的一半
2.把cwnd再設置為ssthresh的值(具體實現有些為ssthresh+3)
3.重新進入擁塞避免階段。
後來的「快速恢復」演算法是在上述的「快速重傳」演算法後添加的,當收到3個重復ACK時,TCP最後進入的不是擁塞避免階段,而是快速恢復階段。快速重傳和快速恢復演算法一般同時使用。快速恢復的思想是「數據包守恆」原則,即同一個時刻在網路中的數據包數量是恆定的,只有當「老」數據包離開了網路後,才能向網路中發送一個「新」的數據包,如果發送方收到一個重復的ACK,那麼根據TCP的ACK機制就表明有一個數據包離開了網路,於是cwnd加1。如果能夠嚴格按照該原則那麼網路中很少會發生擁塞,事實上擁塞控制的目的也就在修正違反該原則的地方。
具體來說快速恢復的主要步驟是:
1.當收到3個重復ACK時,把ssthresh設置為cwnd的一半,把cwnd設置為ssthresh的值加3,然後重傳丟失的報文段,加3的原因是因為收到3個重復的ACK,表明有3個「老」的數據包離開了網路。
2.再收到重復的ACK時,擁塞窗口增加1。
3.當收到新的數據包的ACK時,把cwnd設置為第一步中的ssthresh的值。原因是因為該ACK確認了新的數據,說明從重復ACK時的數據都已收到,該恢復過程已經結束,可以回到恢復之前的狀態了,也即再次進入擁塞避免狀態。
快速重傳演算法首次出現在4.3BSD的Tahoe版本,快速恢復首次出現在4.3BSD的Reno版本,也稱之為Reno版的TCP擁塞控制演算法。
可以看出Reno的快速重傳演算法是針對一個包的重傳情況的,然而在實際中,一個重傳超時可能導致許多的數據包的重傳,因此當多個數據包從一個數據窗口中丟失時並且觸發快速重傳和快速恢復演算法時,問題就產生了。因此NewReno出現了,它在Reno快速恢復的基礎上稍加了修改,可以恢復一個窗口內多個包丟失的情況。具體來講就是:Reno在收到一個新的數據的ACK時就退出了快速恢復狀態了,而NewReno需要收到該窗口內所有數據包的確認後才會退出快速恢復狀態,從而更一步提高吞吐量。
SACK就是改變TCP的確認機制,最初的TCP只確認當前已連續收到的數據,SACK則把亂序等信息會全部告訴對方,從而減少數據發送方重傳的盲目性。比如說序號1,2,3,5,7的數據收到了,那麼普通的ACK只會確認序列號4,而SACK會把當前的5,7已經收到的信息在SACK選項裡面告知對端,從而提高性能,當使用SACK的時候,NewReno演算法可以不使用,因為SACK本身攜帶的信息就可以使得發送方有足夠的信息來知道需要重傳哪些包,而不需要重傳哪些包。
④ 擁塞控制演算法
做QoS嗎?你還是找論文吧,關於這方面的論文還是比較多的,這里有一個演算法,你先看一下吧
BLUE。BLUE的隊列管理方式直接基於丟包率和鏈路利用率,而非瞬時的或平均隊列長度。即它記錄過去的丟包和鏈路利用狀態,以此來對BLUE設定概率Pm 來標記(或丟棄)隊列中的包。如果由於緩存溢出而造成隊列連續丟包, BLUE將增大標記概率Pm ,使返回源端的擁塞通知的速率增加。
相反,如果隊列變空了或鏈路處於空閑狀態,則減小標記概率,從而降低丟包率,提高鏈路利用率。以下是
BLUE演算法:
Upon packet loss (or Qlen >L ) event:
if ( ( now2last update) > freeze time)
then Pm = Pm + d1
last update = now
Upon link idle event:
if ( ( now2last update) > freeze time)
then Pm = Pm + d1
last update = now
其中: freeze time決定兩個Pm 之間的時間間隔; d1 和d2 決定當隊列溢出時Pm 的增加量或當鏈路空閑時Pm的減少量。
你是學生嗎?如果是直接上中國期刊網,不是的話可能要花錢了,書上一般不會給你具體演算法。
⑤ 什麼是網路擁塞控制
2擁塞(congestion)
一般來說,當通信子網中有太多的分組時,網路性能降低,這種情況就叫擁塞
1本質:對資源的需求 >可用資源——擁塞出現表示荷載超過了資源的承受能力。
2、擁塞產生的原因
主要原因是通信量往往是突發的
多個輸入對應一個輸出;
n慢速處理器;
n低帶寬線路。
n3、解決辦法
n針對某個因素的解決方案,只能對提高網路性能起到一點點好處,甚至可能僅僅是轉移了影響性能的瓶頸;
n需要全面考慮各個因素。
1顯然的兩種克服方法:增加資源和降低負荷。(拒絕某些服務)
管理(盡可能避免)擁塞的方法:主機能以一個恆定的速率發送信息;通信量整形(強迫分組以某種更有預見性的速率傳送)。
4、n擁塞控制與流量控制的差別
n擁塞控制(congestion control)需要確保通信子網能夠承載用戶提交的通信量,是一個全局性問題,涉及主機、路由器等很多因素;
n流量控制(flow control)與點到點的通信量有關,主要解決快速發送方與慢速接收方的問題,是局部問題,一般都是基於反饋進行控制的。
二、擁塞控制的基本原理
n根據控制論,擁塞控制方法分為兩類
n1、開環控制
n通過好的設計來解決問題,避免擁塞發生;
n擁塞控制時,不考慮網路當前狀態;
n2、閉環控制
n基於反饋機制;
n3、工作過程
n監控系統,發現何時何地發生擁塞;
n把發生擁塞的消息傳給能採取動作的站點;
n調整系統操作,解決問題。
n4、衡量網路是否擁塞的參數
n缺乏緩沖區造成的丟包率;
n平均隊列長度;
n超時重傳的包的數目;
n平均包延遲;
n包延遲變化(Jitter)。
n5、反饋方法
n向負載發生源發送一個告警包;
n包結構中保留一個位或域用來表示發生擁塞,一旦發生擁塞,路由器將所有的輸出包置位,向鄰居告警;
n主機或路由器主動地、周期性地發送探報(probe),查詢是否發生擁塞。
6、n擁塞預防策略——流量整形(Traffic Shaping)
n開環控制
⑥ TCP擁塞控制
以下資料參考:為了防止網路的擁塞現象,TCP提出了一系列的擁塞控制機制。最初由V. Jacobson在1988年的論文中提出的TCP的擁塞控制由「慢啟動(Slow start)」和「擁塞避免(Congestion avoidance)」組成,後來TCP Reno版本中又針對性的加入了「快速重傳(Fast retransmit)」、「快速恢復(Fast Recovery)」演算法,再後來在TCP NewReno中又對「快速恢復」演算法進行了改進,近些年又出現了選擇性應答( selective acknowledgement,SACK)演算法,還有其他方面的大大小小的改進,成為網路研究的一個熱點。TCP的擁塞控制主要原理依賴於一個擁塞窗口(cwnd)來控制,在之前我們還討論過TCP還有一個對端通告的接收窗口(rwnd)用於流量控制。窗口值的大小就代表能夠發送出去的但還沒有收到ACK的最大數據報文段,顯然窗口越大那麼數據發送的速度也就越快,但是也有越可能使得網路出現擁塞,如果窗口值為1,那麼就簡化為一個停等協議,每發送一個數據,都要等到對方的確認才能發送第二個數據包,顯然數據傳輸效率低下。TCP的擁塞控制演算法就是要在這兩者之間權衡,選取最好的cwnd值,從而使得網路吞吐量最大化且不產生擁塞。由於需要考慮擁塞控制和流量控制兩個方面的內容,因此TCP的真正的發送窗口=min(rwnd, cwnd)。但是rwnd是由對端確定的,網路環境對其沒有影響,所以在考慮擁塞的時候我們一般不考慮rwnd的值,我們暫時只討論如何確定cwnd值的大小。關於cwnd的單位,在TCP中是以位元組來做單位的,我們假設TCP每次傳輸都是按照MSS大小來發送數據的,因此你可以認為cwnd按照數據包個數來做單位也可以理解,所以有時我們說cwnd增加1也就是相當於位元組數增加1個MSS大小。慢啟動:最初的TCP在連接建立成功後會向網路中發送大量的數據包,這樣很容易導致網路中路由器緩存空間耗盡,從而發生擁塞。因此新建立的連接不能夠一開始就大量發送數據包,而只能根據網路情況逐步增加每次發送的數據量,以避免上述現象的發生。具體來說,當新建連接時,cwnd初始化為1個最大報文段(MSS)大小,發送端開始按照擁塞窗口大小發送數據,每當有一個報文段被確認,cwnd就增加1個MSS大小。這樣cwnd的值就隨著網路往返時間(Round Trip Time,RTT)呈指數級增長,事實上,慢啟動的速度一點也不慢,只是它的起點比較低一點而已。我們可以簡單計算下: 開始 ---> cwnd = 1 經過1個RTT後 ---> cwnd = 2*1 = 2 經過2個RTT後 ---> cwnd = 2*2= 4 經過3個RTT後 ---> cwnd = 4*2 = 8如果帶寬為W,那麼經過RTT*log2W時間就可以占滿帶寬。擁塞避免:從慢啟動可以看到,cwnd可以很快的增長上來,從而最大程度利用網路帶寬資源,但是cwnd不能一直這樣無限增長下去,一定需要某個限制。TCP使用了一個叫慢啟動門限(ssthresh)的變數,當cwnd超過該值後,慢啟動過程結束,進入擁塞避免階段。對於大多數TCP實現來說,ssthresh的值是65536(同樣以位元組計算)。擁塞避免的主要思想是加法增大,也就是cwnd的值不再指數級往上升,開始加法增加。此時當窗口中所有的報文段都被確認時,cwnd的大小加1,cwnd的值就隨著RTT開始線性增加,這樣就可以避免增長過快導致網路擁塞,慢慢的增加調整到網路的最佳值。上面討論的兩個機制都是沒有檢測到擁塞的情況下的行為,那麼當發現擁塞了cwnd又該怎樣去調整呢?首先來看TCP是如何確定網路進入了擁塞狀態的,TCP認為網路擁塞的主要依據是它重傳了一個報文段。上面提到過,TCP對每一個報文段都有一個定時器,稱為重傳定時器(RTO),當RTO超時且還沒有得到數據確認,那麼TCP就會對該報文段進行重傳,當發生超時時,那麼出現擁塞的可能性就很大,某個報文段可能在網路中某處丟失,並且後續的報文段也沒有了消息,在這種情況下,TCP反應比較「強烈」:1.把ssthresh降低為cwnd值的一半2.把cwnd重新設置為13.重新進入慢啟動過程。從整體上來講,TCP擁塞控制窗口變化的原則是AIMD原則,即加法增大、乘法減小。可以看出TCP的該原則可以較好地保證流之間的公平性,因為一旦出現丟包,那麼立即減半退避,可以給其他新建的流留有足夠的空間,從而保證整個的公平性。其實TCP還有一種情況會進行重傳:那就是收到3個相同的ACK。TCP在收到亂序到達包時就會立即發送ACK,TCP利用3個相同的ACK來判定數據包的丟失,此時進行快速重傳,快速重傳做的事情有:1.把ssthresh設置為cwnd的一半2.把cwnd再設置為ssthresh的值(具體實現有些為ssthresh+3)3.重新進入擁塞避免階段。後來的「快速恢復」演算法是在上述的「快速重傳」演算法後添加的,當收到3個重復ACK時,TCP最後進入的不是擁塞避免階段,而是快速恢復階段。快速重傳和快速恢復演算法一般同時使用。快速恢復的思想是「數據包守恆」原則,即同一個時刻在網路中的數據包數量是恆定的,只有當「老」數據包離開了網路後,才能向網路中發送一個「新」的數據包,如果發送方收到一個重復的ACK,那麼根據TCP的ACK機制就表明有一個數據包離開了網路,於是cwnd加1。如果能夠嚴格按照該原則那麼網路中很少會發生擁塞,事實上擁塞控制的目的也就在修正違反該原則的地方。具體來說快速恢復的主要步驟是:1.當收到3個重復ACK時,把ssthresh設置為cwnd的一半,把cwnd設置為ssthresh的值加3,然後重傳丟失的報文段,加3的原因是因為收到3個重復的ACK,表明有3個「老」的數據包離開了網路。 2.再收到重復的ACK時,擁塞窗口增加1。3.當收到新的數據包的ACK時,把cwnd設置為第一步中的ssthresh的值。原因是因為該ACK確認了新的數據,說明從重復ACK時的數據都已收到,該恢復過程已經結束,可以回到恢復之前的狀態了,也即再次進入擁塞避免狀態。快速重傳演算法首次出現在4.3BSD的Tahoe版本,快速恢復首次出現在4.3BSD的Reno版本,也稱之為Reno版的TCP擁塞控制演算法。可以看出Reno的快速重傳演算法是針對一個包的重傳情況的,然而在實際中,一個重傳超時可能導致許多的數據包的重傳,因此當多個數據包從一個數據窗口中丟失時並且觸發快速重傳和快速恢復演算法時,問題就產生了。因此NewReno出現了,它在Reno快速恢復的基礎上稍加了修改,可以恢復一個窗口內多個包丟失的情況。具體來講就是:Reno在收到一個新的數據的ACK時就退出了快速恢復狀態了,而NewReno需要收到該窗口內所有數據包的確認後才會退出快速恢復狀態,從而更一步提高吞吐量。SACK就是改變TCP的確認機制,最初的TCP只確認當前已連續收到的數據,SACK則把亂序等信息會全部告訴對方,從而減少數據發送方重傳的盲目性。比如說序號1,2,3,5,7的數據收到了,那麼普通的ACK只會確認序列號4,而SACK會把當前的5,7已經收到的信息在SACK選項裡面告知對端,從而提高性能,當使用SACK的時候,NewReno演算法可以不使用,因為SACK本身攜帶的信息就可以使得發送方有足夠的信息來知道需要重傳哪些包,而不需要重傳哪些包。
⑦ TCP協議採取了哪些機制來進行擁塞控制
最初的TCP協議只有基於窗口的流控制(flow control)機制而沒有擁塞控制機制,流控制是一種局部控制機制,其參與者僅僅是發送方和接收方,它只考慮了接收端的接收能力,而沒有考慮到網路的傳輸能力;而擁塞控制則注重於整體,其考慮的是整個網路的傳輸能力,是一種全局控制機制。 擁塞控制機制使得TCP連接在網路發生擁塞時回退(back off),也就是說TCP源端會對網路發出的擁塞指示(congestion notification)(例如丟包、重復的ACK等)作出響應。 針對TCP在控制網路擁塞方面的不足,後來又提出了「慢啟動」(Slow Start)和「擁塞避免」(Congestion Avoidance)演算法。 TCP Reno版本增加了「快速重傳 」(Fast Retransmit)、「快速恢復」(Fast Recovery)演算法,避免了網路擁塞不嚴重時採用「慢啟動」演算法而造成過大地減小發送窗口尺寸的現象,這樣TCP的擁塞控制就由這4個核心部分組成。 近幾年又出現TCP的改進版本如NewReno和選擇性應答(selective acknowledgement,SACK)等。
⑧ tcp/ip採用什麼方法進行擁塞控制
TCP window機制
⑨ 簡述擁塞控制的四種基本演算法
慢開始,擁塞避免,快重傳,快恢復.
首先要明白什麼TCP協議可靠傳輸,還有什麼是擁塞窗口:表示當前發送數據的上限,但是它會根據網路好壞狀況動態改變.
慢開始:簡單的說,開始傳輸時,傳輸的數據由小到大遞增到一個值(即發送窗口由小到大(指數增長)逐漸增大到擁塞窗口的數值).
擁塞避免:數據發送出去,並發到接收方發回來的確認收到,擁塞窗口每次值加1地線性增大.
快重傳:數據傳輸時(數據被分成報文,每個報文都有個序號),中間的一部分丟失接收方沒收到,接收方連續接到後面的數據,則發回對丟失前的數據的重復確認,這樣發送方就知道有部分數據丟失了,於是從丟失出重傳數據.
快恢復:快恢復是與快重傳配合的演算法,在發生數據丟失時,發送方收到接收方發回的三個重復確認信息時,就把每次傳輸的數據量減為原來的一半,擁塞窗口也修改為這個值,然後又開始擁塞避免的演算法.
⑩ TCP的擁塞控制演算法中,請簡述慢開始演算法和擁塞避免演算法的基本思想
慢開始演算法:
cwnd每收到一個acknowledge增加1
擁塞避免演算法
當cwnd達到或者超過當前設定的threshold後,cwnd每個RTT增加1。
如果發生timeout, cwnd = 1,threshold=cwnd/2. 重新進入慢開始。
如果收到3個重復的acknowledgement, cwnd = threshold = cwnd/2.