當前位置:首頁 » 操作系統 » 大數據經典演算法

大數據經典演算法

發布時間: 2022-07-26 18:25:10

Ⅰ 列哪些演算法可以應用於大數據挖掘

數據挖掘演算法都是可以用於大數據挖掘,大數據簡單來說只是說明數據量很大,一般指TB級別以上的,一台伺服器無法處理,需要分布式系統來處理。
其中,數據挖掘經典十大演算法為:C4.5,K-Means,SVM,Apriori,EM,PageRank,AdaBoost,KNN,NB和CART。
常見的分布式計算有Hadoop Spark等,如果要實時計算的,一般用Storm什麼的。

Ⅱ 大數據挖掘常用的方法有哪些

1、分類。分類是找出資料庫中一組數據對象的共同特點並按照分類模式將其劃分為不同的類,其目的是通過分類模型,將資料庫中的數據項映射到某個給定的類別。
它可以應用到客戶的分類、客戶的屬性和特徵分析、客戶滿意度分析、客戶的購買趨勢預測等,如一個汽車零售商將客戶按照對汽車的喜好劃分成不同的類,這樣營銷人員就可以將新型汽車的廣告手冊直接郵寄到有這種喜好的客戶手中,從而大大增加了商業機會。
2、回歸分析。回歸分析方法反映的是事務資料庫中屬性值在時間上的特徵,產生一個將數據項映射到一個實值預測變數的函數,發現變數或屬性間的依賴關系,其主要研究問題包括數據序列的趨勢特徵、數據序列的預測以及數據間的相關關系等。
它可以應用到市場營銷的各個方面,如客戶尋求、保持和預防客戶流失活動、產品生命周期分析、銷售趨勢預測及有針對性的促銷活動等。
3、聚類。聚類分析是把一組數據按照相似性和差異性分為幾個類別,其目的是使得屬於同一類別的數據間的相似性盡可能大,不同類別中的數據間的相似性盡可能小。
它可以應用到客戶群體的分類、客戶背景分析、客戶購買趨勢預測、市場的細分等。
4、關聯規則。關聯規則是描述資料庫中數據項之間所存在的關系的規則,即根據一個事務中某些項的出現可導出另一些項在同一事務中也出現,即隱藏在數據間的關聯或相互關系。
在客戶關系管理中,通過對企業的客戶資料庫里的大量數據進行挖掘,可以從大量的記錄中發現有趣的關聯關系,找出影響市場營銷效果的關鍵因素,為產品定位、定價與定製客戶群,客戶尋求、細分與保持,市場營銷與推銷,營銷風險評估和詐騙預測等決策支持提供參考依據。
5、特徵。特徵分析是從資料庫中的一組數據中提取出關於這些數據的特徵式,這些特徵式表達了該數據集的總體特徵。如營銷人員通過對客戶流失因素的特徵提取,可以得到導致客戶流失的一系列原因和主要特徵,利用這些特徵可以有效地預防客戶的流失。
6、變化和偏差分析。偏差包括很大一類潛在有趣的知識,如分類中的反常實例,模式的例外,觀察結果對期望的偏差等,其目的是尋找觀察結果與參照量之間有意義的差別。在企業危機管理及其預警中,管理者更感興趣的是那些意外規則。意外規則的挖掘可以應用到各種異常信息的發現、分析、識別、評價和預警等方面。

Ⅲ 數據挖掘的經典演算法有哪些

1. C4.5


C4.5演算法是機器學習演算法中的一種分類決策樹演算法,其核心演算法是ID3演算法. C4.5演算法繼承了ID3演算法的優點,並在以下幾方面對ID3演算法進行了改進:


1) 用信息增益率來選擇屬性,克服了用信息增益選擇屬性時偏向選擇取值多的屬性的不足;


2) 在樹構造過程中進行剪枝;


3) 能夠完成對連續屬性的離散化處理;


4) 能夠對不完整數據進行處理。


2. The k-means algorithm 即K-Means演算法


k-means algorithm演算法是一個聚類演算法,把n的對象根據他們的屬性分為k個分割,k < n。它與處理混合正態分布的最大期望演算法很相似,因為他們都試圖找到數據中自然聚類的中心。它假設對象屬性來自於空間向量,並且目標是使各個群組內部的均 方誤差總和最小。


3. Support vector machines


支持向量機,英文為Support Vector Machine,簡稱SV機(論文中一般簡稱SVM)。它是一種監督式學習的方法,它廣泛的應用於統計分類以及回歸分析中。支持向量機將向量映射到一個更 高維的空間里,在這個空間里建立有一個最大間隔超平面。在分開數據的超平面的兩邊建有兩個互相平行的超平面。分隔超平面使兩個平行超平面的距離最大化。


4. The Apriori algorithm


Apriori演算法,它是一種最具影響力的挖掘布爾關聯規則頻繁項集的演算法。它的演算法核心是基於兩階段頻集思想的遞推演算法。該關聯規則在分類上屬於單維、單層、布爾關聯規則。在這里,所有支持度大於最小支持度的項集稱為頻繁項集,簡稱頻集。


關於數據挖掘的經典演算法有哪些,該如何下手的內容,青藤小編就和您分享到這里了。如果您對大數據工程有濃厚的興趣,希望這篇文章可以為您提供幫助。如果您還想了解更多關於數據分析師、大數據工程師的技巧及素材等內容,可以點擊本站的其他文章進行學習。

Ⅳ 大數據挖掘的演算法有哪些

大數據挖掘的演算法:
1.樸素貝葉斯,超級簡單,就像做一些數數的工作。如果條件獨立假設成立的話,NB將比鑒別模型收斂的更快,所以你只需要少量的訓練數據。即使條件獨立假設不成立,NB在實際中仍然表現出驚人的好。
2. Logistic回歸,LR有很多方法來對模型正則化。比起NB的條件獨立性假設,LR不需要考慮樣本是否是相關的。與決策樹與支持向量機不同,NB有很好的概率解釋,且很容易利用新的訓練數據來更新模型。如果你想要一些概率信息或者希望將來有更多數據時能方便的更新改進模型,LR是值得使用的。
3.決策樹,DT容易理解與解釋。DT是非參數的,所以你不需要擔心野點(或離群點)和數據是否線性可分的問題,DT的主要缺點是容易過擬合,這也正是隨機森林等集成學習演算法被提出來的原因。
4.支持向量機,很高的分類正確率,對過擬合有很好的理論保證,選取合適的核函數,面對特徵線性不可分的問題也可以表現得很好。SVM在維數通常很高的文本分類中非常的流行。

如果想要或許更多更詳細的訊息,建議您去參加CDA數據分析課程。大數據分析師現在有專業的國際認證證書了,CDA,即「CDA 數據分析師」,是在數字經濟大背景和人工智慧時代趨勢下,面向全行業的專業權威國際資格認證, 旨在提升全民數字技能,助力企業數字化轉型,推動行業數字化發展。 「CDA 數據分析師」具體指在互聯網、金融、零售、咨詢、電信、醫療、旅遊等行業專門從事數據的採集、清洗、處理、分析並能製作業務報告、 提供決策的新型數據分析人才。點擊預約免費試聽課。

Ⅳ 大數據挖掘常用的演算法有哪些

1、預測建模:將已有數據和模型用於對未知變數的語言。

分類,用於預測離散的目標變數。

回歸,用於預測連續的目標變數。

2、聚類分析:發現緊密相關的觀測值組群,使得與屬於不同簇的觀測值相比,屬於同一簇的觀測值相互之間盡可能類似。

3、關聯分析(又稱關系模式):反映一個事物與其他事物之間的相互依存性和關聯性。用來發現描述數據中強關聯特徵的模式。

4、異常檢測:識別其特徵顯著不同於其他數據的觀測值。

有時也把數據挖掘分為:分類,回歸,聚類,關聯分析。

Ⅵ 大數據常用演算法有哪些

made it," sai

Ⅶ 大數據分析之聚類演算法

大數據分析之聚類演算法
1. 什麼是聚類演算法
所謂聚類,就是比如給定一些元素或者對象,分散存儲在資料庫中,然後根據我們感興趣的對象屬性,對其進行聚集,同類的對象之間相似度高,不同類之間差異較大。最大特點就是事先不確定類別。
這其中最經典的演算法就是KMeans演算法,這是最常用的聚類演算法,主要思想是:在給定K值和K個初始類簇中心點的情況下,把每個點(亦即數據記錄)分到離其最近的類簇中心點所代表的類簇中,所有點分配完畢之後,根據一個類簇內的所有點重新計算該類簇的中心點(取平均值),然後再迭代的進行分配點和更新類簇中心點的步驟,直至類簇中心點的變化很小,或者達到指定的迭代次數。
KMeans演算法本身思想比較簡單,但是合理的確定K值和K個初始類簇中心點對於聚類效果的好壞有很大的影響。
聚類演算法實現
假設對象集合為D,准備劃分為k個簇。
基本演算法步驟如下:
1、從D中隨機取k個元素,作為k個簇的各自的中心。
2、分別計算剩下的元素到k個簇中心的相異度,將這些元素分別劃歸到相異度最低的簇。
3、根據聚類結果,重新計算k個簇各自的中心,計算方法是取簇中所有元素各自維度的算術平均數。
4、將D中全部元素按照新的中心重新聚類。
5、重復第4步,直到聚類結果不再變化。
6、將結果輸出。

核心Java代碼如下:
/**
* 迭代計算每個點到各個中心點的距離,選擇最小距離將該點劃入到合適的分組聚類中,反復進行,直到
* 分組不再變化或者各個中心點不再變化為止。
* @return
*/
public List[] comput() {
List[] results = new ArrayList[k];//為k個分組,分別定義一個聚簇集合,未來放入元素。

boolean centerchange = true;//該變數存儲中心點是否發生變化
while (centerchange) {
iterCount++;//存儲迭代次數
centerchange = false;
for (int i = 0; i < k; i++) {
results[i] = new ArrayList<T>();
}
for (int i = 0; i < players.size(); i++) {
T p = players.get(i);
double[] dists = new double[k];
for (int j = 0; j < initPlayers.size(); j++) {
T initP = initPlayers.get(j);
/* 計算距離 這里採用的公式是兩個對象相關屬性的平方和,最後求開方*/
double dist = distance(initP, p);
dists[j] = dist;
}

int dist_index = computOrder(dists);//計算該點到各個質心的距離的最小值,獲得下標
results[dist_index].add(p);//劃分到對應的分組。
}
/*
* 將點聚類之後,重新尋找每個簇的新的中心點,根據每個點的關注屬性的平均值確立新的質心。
*/
for (int i = 0; i < k; i++) {
T player_new = findNewCenter(results[i]);
System.out.println("第"+iterCount+"次迭代,中心點是:"+player_new.toString());
T player_old = initPlayers.get(i);
if (!IsPlayerEqual(player_new, player_old)) {
centerchange = true;
initPlayers.set(i, player_new);
}

}

}

return results;
}
上面代碼是其中核心代碼,我們根據對象集合List和提前設定的k個聚集,最終完成聚類。我們測試一下,假設要測試根據NBA球員的場均得分情況,進行得分高中低的聚集,很簡單,高得分在一組,中等一組,低得分一組。
我們定義一個Player類,裡面有屬性goal,並錄入數據。並設定分組數目為k=3。
測試代碼如下:
List listPlayers = new ArrayList();
Player p1 = new Player();
p1.setName(「mrchi1」);
p1.setGoal(1);
p1.setAssists(8);
listPlayers.add(p1);

Player p2 = new Player();
p2.setName("mrchi2");
p2.setGoal(2);
listPlayers.add(p2);

Player p3 = new Player();
p3.setName("mrchi3");
p3.setGoal(3);
listPlayers.add(p3);
//其他對象定義此處略。製造幾個球員的對象即可。
Kmeans<Player> kmeans = new Kmeans<Player>(listPlayers, 3);
List<Player>[] results = kmeans.comput();
for (int i = 0; i < results.length; i++) {
System.out.println("類別" + (i + 1) + "聚集了以下球員:");
List<Player> list = results[i];
for (Player p : list) {
System.out.println(p.getName() + "--->" + p.getGoal()

}
}
演算法運行結果:

可以看出中心點經歷了四次迭代變化,最終分類結果也確實是相近得分的分到了一組。當然這種演算法有缺點,首先就是初始的k個中心點的確定非常重要,結果也有差異。可以選擇彼此距離盡可能遠的K個點,也可以先對數據用層次聚類演算法進行聚類,得到K個簇之後,從每個類簇中選擇一個點,該點可以是該類簇的中心點,或者是距離類簇中心點最近的那個點。

Ⅷ 大數據分析工具詳盡介紹&數據分析演算法

大數據分析工具詳盡介紹&數據分析演算法

1、 Hadoop

Hadoop 是一個能夠對大量數據進行分布式處理的軟體框架。但是 Hadoop 是以一種可靠、高效、可伸縮的方式進行處理的。Hadoop 是可靠的,因為它假設計算元素和存儲會失敗,因此它維護多個工作數據副本,確保能夠針對失敗的節點重新分布處理。Hadoop 是高效的,因為它以並行的方式工作,通過並行處理加快處理速度。Hadoop 還是可伸縮的,能夠處理 PB 級數據。此外,Hadoop 依賴於社區伺服器,因此它的成本比較低,任何人都可以使用。
Hadoop是一個能夠讓用戶輕松架構和使用的分布式計算平台。用戶可以輕松地在Hadoop上開發和運行處理海量數據的應用程序。它主要有以下幾個優點:
⒈高可靠性。Hadoop按位存儲和處理數據的能力值得人們信賴。
⒉高擴展性。Hadoop是在可用的計算機集簇間分配數據並完成計算任務的,這些集簇可以方便地擴展到數以千計的節點中。
⒊高效性。Hadoop能夠在節點之間動態地移動數據,並保證各個節點的動態平衡,因此處理速度非常快。
⒋高容錯性。Hadoop能夠自動保存數據的多個副本,並且能夠自動將失敗的任務重新分配。
Hadoop帶有用 Java 語言編寫的框架,因此運行在 Linux 生產平台上是非常理想的。Hadoop 上的應用程序也可以使用其他語言編寫,比如 C++。
2、 HPCC
HPCC,High Performance Computing and Communications(高性能計算與通信)的縮寫。1993年,由美國科學、工程、技術聯邦協調理事會向國會提交了「重大挑戰項目:高性能計算與 通信」的報告,也就是被稱為HPCC計劃的報告,即美國總統科學戰略項目,其目的是通過加強研究與開發解決一批重要的科學與技術挑戰問題。HPCC是美國 實施信息高速公路而上實施的計劃,該計劃的實施將耗資百億美元,其主要目標要達到:開發可擴展的計算系統及相關軟體,以支持太位級網路傳輸性能,開發千兆 比特網路技術,擴展研究和教育機構及網路連接能力。
該項目主要由五部分組成:
1、高性能計算機系統(HPCS),內容包括今後幾代計算機系統的研究、系統設計工具、先進的典型系統及原有系統的評價等;
2、先進軟體技術與演算法(ASTA),內容有巨大挑戰問題的軟體支撐、新演算法設計、軟體分支與工具、計算計算及高性能計算研究中心等;
3、國家科研與教育網格(NREN),內容有中接站及10億位級傳輸的研究與開發;
4、基本研究與人類資源(BRHR),內容有基礎研究、培訓、教育及課程教材,被設計通過獎勵調查者-開始的,長期 的調查在可升級的高性能計算中來增加創新意識流,通過提高教育和高性能的計算訓練和通信來加大熟練的和訓練有素的人員的聯營,和來提供必需的基礎架構來支 持這些調查和研究活動;
5、信息基礎結構技術和應用(IITA ),目的在於保證美國在先進信息技術開發方面的領先地位。
3、 Storm
Storm是自由的開源軟體,一個分布式的、容錯的實時計算系統。Storm可以非常可靠的處理龐大的數據流,用於處理Hadoop的批量數據。Storm很簡單,支持許多種編程語言,使用起來非常有趣。Storm由Twitter開源而來,其它知名的應用企業包括Groupon、淘寶、支付寶、阿里巴巴、樂元素、Admaster等等。
Storm有許多應用領域:實時分析、在線機器學習、不停頓的計算、分布式RPC(遠過程調用協議,一種通過網路從遠程計算機程序上請求服務)、 ETL(Extraction-Transformation-Loading的縮寫,即數據抽取、轉換和載入)等等。Storm的處理速度驚人:經測 試,每個節點每秒鍾可以處理100萬個數據元組。Storm是可擴展、容錯,很容易設置和操作。
4、 Apache Drill
為了幫助企業用戶尋找更為有效、加快Hadoop數據查詢的方法,Apache軟體基金會近日發起了一項名為「Drill」的開源項目。Apache Drill 實現了 Google』s Dremel.
據Hadoop廠商MapR Technologies公司產品經理Tomer Shiran介紹,「Drill」已經作為Apache孵化器項目來運作,將面向全球軟體工程師持續推廣。
該項目將會創建出開源版本的谷歌Dremel Hadoop工具(谷歌使用該工具來為Hadoop數據分析工具的互聯網應用提速)。而「Drill」將有助於Hadoop用戶實現更快查詢海量數據集的目的。
「Drill」項目其實也是從谷歌的Dremel項目中獲得靈感:該項目幫助谷歌實現海量數據集的分析處理,包括分析抓取Web文檔、跟蹤安裝在Android Market上的應用程序數據、分析垃圾郵件、分析谷歌分布式構建系統上的測試結果等等。
通過開發「Drill」Apache開源項目,組織機構將有望建立Drill所屬的API介面和靈活強大的體系架構,從而幫助支持廣泛的數據源、數據格式和查詢語言。
5、 RapidMiner
RapidMiner是世界領先的數據挖掘解決方案,在一個非常大的程度上有著先進技術。它數據挖掘任務涉及范圍廣泛,包括各種數據藝術,能簡化數據挖掘過程的設計和評價。
功能和特點
免費提供數據挖掘技術和庫
100%用Java代碼(可運行在操作系統)
數據挖掘過程簡單,強大和直觀
內部XML保證了標准化的格式來表示交換數據挖掘過程
可以用簡單腳本語言自動進行大規模進程
多層次的數據視圖,確保有效和透明的數據
圖形用戶界面的互動原型
命令行(批處理模式)自動大規模應用
Java API(應用編程介面)
簡單的插件和推廣機制
強大的可視化引擎,許多尖端的高維數據的可視化建模
400多個數據挖掘運營商支持
耶魯大學已成功地應用在許多不同的應用領域,包括文本挖掘,多媒體挖掘,功能設計,數據流挖掘,集成開發的方法和分布式數據挖掘。
6、 Pentaho BI
Pentaho BI 平台不同於傳統的BI 產品,它是一個以流程為中心的,面向解決方案(Solution)的框架。其目的在於將一系列企業級BI產品、開源軟體、API等等組件集成起來,方便商務智能應用的開發。它的出現,使得一系列的面向商務智能的獨立產品如Jfree、Quartz等等,能夠集成在一起,構成一項項復雜的、完整的商務智能解決方案。
Pentaho BI 平台,Pentaho Open BI 套件的核心架構和基礎,是以流程為中心的,因為其中樞控制器是一個工作流引擎。工作流引擎使用流程定義來定義在BI 平台上執行的商業智能流程。流程可以很容易的被定製,也可以添加新的流程。BI 平台包含組件和報表,用以分析這些流程的性能。目前,Pentaho的主要組成元素包括報表生成、分析、數據挖掘和工作流管理等等。這些組件通過 J2EE、WebService、SOAP、HTTP、Java、JavaScript、Portals等技術集成到Pentaho平台中來。 Pentaho的發行,主要以Pentaho SDK的形式進行。
Pentaho SDK共包含五個部分:Pentaho平台、Pentaho示例資料庫、可獨立運行的Pentaho平台、Pentaho解決方案示例和一個預先配製好的 Pentaho網路伺服器。其中Pentaho平台是Pentaho平台最主要的部分,囊括了Pentaho平台源代碼的主體;Pentaho資料庫為 Pentaho平台的正常運行提供的數據服務,包括配置信息、Solution相關的信息等等,對於Pentaho平台來說它不是必須的,通過配置是可以用其它資料庫服務取代的;可獨立運行的Pentaho平台是Pentaho平台的獨立運行模式的示例,它演示了如何使Pentaho平台在沒有應用伺服器支持的情況下獨立運行;
Pentaho解決方案示例是一個Eclipse工程,用來演示如何為Pentaho平台開發相關的商業智能解決方案。
Pentaho BI 平台構建於伺服器,引擎和組件的基礎之上。這些提供了系統的J2EE 伺服器,安全,portal,工作流,規則引擎,圖表,協作,內容管理,數據集成,分析和建模功能。這些組件的大部分是基於標準的,可使用其他產品替換之。
7、 SAS Enterprise Miner
§ 支持整個數據挖掘過程的完備工具集
§ 易用的圖形界面,適合不同類型的用戶快速建模
§ 強大的模型管理和評估功能
§ 快速便捷的模型發布機制, 促進業務閉環形成
數據分析演算法
大數據分析主要依靠機器學習和大規模計算。機器學習包括監督學習、非監督學習、強化學習等,而監督學習又包括分類學習、回歸學習、排序學習、匹配學習等(見圖1)。分類是最常見的機器學習應用問題,比如垃圾郵件過濾、人臉檢測、用戶畫像、文本情感分析、網頁歸類等,本質上都是分類問題。分類學習也是機器學習領域,研究最徹底、使用最廣泛的一個分支。
最近、Fernández-Delgado等人在JMLR(Journal of Machine Learning Research,機器學習頂級期刊)雜志發表了一篇有趣的論文。他們讓179種不同的分類學習方法(分類學習演算法)在UCI 121個數據集上進行了「大比武」(UCI是機器學習公用數據集,每個數據集的規模都不大)。結果發現Random Forest(隨機森林)和SVM(支持向量機)名列第一、第二名,但兩者差異不大。在84.3%的數據上、Random Forest壓倒了其它90%的方法。也就是說,在大多數情況下,只用Random Forest 或 SVM事情就搞定了。
KNN
K最近鄰演算法。給定一些已經訓練好的數據,輸入一個新的測試數據點,計算包含於此測試數據點的最近的點的分類情況,哪個分類的類型佔多數,則此測試點的分類與此相同,所以在這里,有的時候可以復制不同的分類點不同的權重。近的點的權重大點,遠的點自然就小點。詳細介紹鏈接
Naive Bayes
樸素貝葉斯演算法。樸素貝葉斯演算法是貝葉斯演算法裡面一種比較簡單的分類演算法,用到了一個比較重要的貝葉斯定理,用一句簡單的話概括就是條件概率的相互轉換推導。詳細介紹鏈接
樸素貝葉斯分類是一種十分簡單的分類演算法,叫它樸素貝葉斯分類是因為這種方法的思想真的很樸素,樸素貝葉斯的思想基礎是這樣的:對於給出的待分類項,求解在此項出現的條件下各個類別出現的概率,哪個最大,就認為此待分類項屬於哪個類別。通俗來說,就好比這么個道理,你在街上看到一個黑人,我問你你猜這哥們哪裡來的,你十有八九猜非洲。為什麼呢?因為黑人中非洲人的比率最高,當然人家也可能是美洲人或亞洲人,但在沒有其它可用信息下,我們會選擇條件概率最大的類別,這就是樸素貝葉斯的思想基礎。
SVM
支持向量機演算法。支持向量機演算法是一種對線性和非線性數據進行分類的方法,非線性數據進行分類的時候可以通過核函數轉為線性的情況再處理。其中的一個關鍵的步驟是搜索最大邊緣超平面。詳細介紹鏈接
Apriori
Apriori演算法是關聯規則挖掘演算法,通過連接和剪枝運算挖掘出頻繁項集,然後根據頻繁項集得到關聯規則,關聯規則的導出需要滿足最小置信度的要求。詳細介紹鏈接
PageRank
網頁重要性/排名演算法。PageRank演算法最早產生於Google,核心思想是通過網頁的入鏈數作為一個網頁好快的判定標准,如果1個網頁內部包含了多個指向外部的鏈接,則PR值將會被均分,PageRank演算法也會遭到LinkSpan攻擊。詳細介紹鏈接
RandomForest
隨機森林演算法。演算法思想是決策樹+boosting.決策樹採用的是CART分類回歸數,通過組合各個決策樹的弱分類器,構成一個最終的強分類器,在構造決策樹的時候採取隨機數量的樣本數和隨機的部分屬性進行子決策樹的構建,避免了過分擬合的現象發生。詳細介紹鏈接
Artificial Neural Network
「神經網路」這個詞實際是來自於生物學,而我們所指的神經網路正確的名稱應該是「人工神經網路(ANNs)」。
人工神經網路也具有初步的自適應與自組織能力。在學習或訓練過程中改變突觸權重值,以適應周圍環境的要求。同一網路因學習方式及內容不同可具有不同的功能。人工神經網路是一個具有學習能力的系統,可以發展知識,以致超過設計者原有的知識水平。通常,它的學習訓練方式可分為兩種,一種是有監督或稱有導師的學習,這時利用給定的樣本標准進行分類或模仿;另一種是無監督學習或稱無為導師學習,這時,只規定學習方式或某些規則,則具體的學習內容隨系統所處環境 (即輸入信號情況)而異,系統可以自動發現環境特徵和規律性,具有更近似人腦的功能。

Ⅸ 大數據分析的高級分析演算法

眾所周知,大數據分析的高級分析演算法過程為下游流程提供了更精確,價值更高的數據,這對於公司真正利用其數據的價值並實現其所需的結果至關重要。下面是小編整理的一些高級分析計劃中使用的一些最受歡迎的演算法。每種方法都有優缺點,可以有效地利用它來產生業務價值的方式也不同。實施這些演算法的最終目標是進一步優化數據,使結果信息可以應用於業務決策。

Ⅹ 大數據核心演算法有哪些

1、A* 搜索演算法——圖形搜索演算法,從給定起點到給定終點計算出路徑。其中使用了一種啟發式的估算,為每個節點估算通過該節點的最佳路徑,並以之為各個地點排定次序。演算法以得到的次序訪問這些節點。因此,A*搜索演算法是最佳優先搜索的範例。
2、集束搜索(又名定向搜索,Beam Search)——最佳優先搜索演算法的優化。使用啟發式函數評估它檢查的每個節點的能力。不過,集束搜索只能在每個深度中發現最前面的m個最符合條件的節點,m是固定數字——集束的寬度。

3、二分查找(Binary Search)——在線性數組中找特定值的演算法,每個步驟去掉一半不符合要求的數據。

4、分支界定演算法(Branch and Bound)——在多種最優化問題中尋找特定最優化解決方案的演算法,特別是針對離散、組合的最優化。

5、Buchberger演算法——一種數學演算法,可將其視為針對單變數最大公約數求解的歐幾里得演算法和線性系統中高斯消元法的泛化。

6、數據壓縮——採取特定編碼方案,使用更少的位元組數(或是其他信息承載單元)對信息編碼的過程,又叫來源編碼。

7、Diffie-Hellman密鑰交換演算法——一種加密協議,允許雙方在事先不了解對方的情況下,在不安全的通信信道中,共同建立共享密鑰。該密鑰以後可與一個對稱密碼一起,加密後續通訊。

8、Dijkstra演算法——針對沒有負值權重邊的有向圖,計算其中的單一起點最短演算法。

9、離散微分演算法(Discrete differentiation)。

熱點內容
php怎麼反編譯 發布:2025-01-19 14:10:54 瀏覽:590
加密貨幣交易平台排名 發布:2025-01-19 13:58:21 瀏覽:741
紅綠燈的編程 發布:2025-01-19 13:57:37 瀏覽:113
老男孩linux教程 發布:2025-01-19 13:44:48 瀏覽:941
買車怎麼區分車配置 發布:2025-01-19 13:44:45 瀏覽:242
丟失緩存視頻 發布:2025-01-19 13:44:09 瀏覽:183
C語言tp 發布:2025-01-19 13:26:20 瀏覽:107
手機qq改變存儲位置 發布:2025-01-19 13:25:17 瀏覽:83
吃解壓海鮮 發布:2025-01-19 13:23:50 瀏覽:820
sql子表 發布:2025-01-19 13:23:11 瀏覽:334