pid演算法參數
1. 有關PID演算法三個參數確定的問題
在matlab上搭建模型測試理想狀態下pwm控制參數;然後結合實際硬體再做測試,校正這些參數。
2. pid參數是如何整定的
參數需要在中控面板當中選擇我們的調整平台,然後找到系統設置更改才可以整定。
3. 如何從理論上分析pid參數的物理意義
1、比例部分:PID是比例、積分、微分的簡稱,PID控制的難點不是編程,而是控制器的參數整定。
增大比例系數使系統反應靈敏,調節速度加快,並且可以減小穩態誤差。但是比例系數過大會使超調量增大,振盪次數增加,調節時間加長,動態性能變壞,比例系數太大甚至會使閉環系統不穩定。單純的比例控制很難保證調節得恰到好處,完全消除誤差。
2、積分部分;積分控制相當於根據當時的誤差值,周期性地微調電位器的角度,每次調節的角度增量值與當時的誤差值成正比。溫度低於設定值時誤差為正,積分項增大,使加熱電流逐漸增大,反之積分項減小。因此只要誤差不為零,控制器的輸出就會因為積分作用而不斷變化。
積分調節的「大方向」是正確的,積分項有減小誤差的作用。一直要到系統處於穩定狀態,這時誤差恆為零,比例部分和微分部分均為零,積分部分才不再變化,並且剛好等於穩態時需要的控制器的輸出值,因此積分部分的作用是消除穩態誤差,提高控制精度,積分作用一般是必須的。
3、微分部分;閉環控制系統的振盪甚至不穩定的根本原因在於有較大的滯後因素。因為微分項能預測誤差變化的趨勢,這種「超前」的作用可以抵消滯後因素的影響。適當的微分控製作用可以使超調量減小,增加系統的穩定性。
對於有較大的滯後特性的被控對象,如果PI控制的效果不理想,可以考慮增加微分控制,以改善系統在調節過程中的動態特性。如果將微分時間設置為0,微分部分將不起作用。微分控制的缺點是對干擾雜訊敏感,使系統抑制干擾的能力降低。為此可在微分部分增加慣性濾波環節。
4、PID參數的調整方法:在整定PID控制器參數時,可以根據控制器的參數與系統動態性能和穩態性能之間的定性關系,用實驗的方法來調節控制器的參數。有經驗的調試人員一般可以較快地得到較為滿意的調試結果。在調試中最重要的問題是在系統性能不能令人滿意時,知道應該調節哪一個參數,該參數應該增大還是減小。
(3)pid演算法參數擴展閱讀:
PID演算法種類:
1、PID增量式演算法
在增量式演算法中,比例項與積分項的符號有以下關系:如果被控量繼續偏離給定值,則這兩項符號相同,而當被控量向給定值方向變化時,則這兩項的符號相反。
由於這一性質,當被控量接近給定值的時候,反號的比例作用阻礙了積分作用,因而避免了積分超調以及隨之帶來的振盪,這顯然是有利於控制的。但如果被控量遠未接近給定值,僅剛開始向給定值變化時,由於比例和積分反向,將會減慢控制過程。
2、PID位置演算法
在基本PID控制中,當有較大幅度的擾動或大幅度改變給定值時, 由於此時有較大的偏差,以及系統有慣性和滯後,故在積分項的作用下,往往會產生較大的超調量和長時間的波動。特別是對於溫度、成份等變化緩慢的過程,這一現象將更嚴重。為此可以採用積分分離措施,即偏差較大時,取消積分作用;當偏差較小時才將積分作用投入。
3、有效偏差法
當根據PID位置演算法算出的控制量超出限制范圍時,控制量實際上只能取邊際值U=Umax,或U=Umin,有效偏差法是將相應的這一控制量的偏差值作為有效偏差值計入積分累計而不是將實際的偏差計入積分累計。因為按實際偏差計算出的控制量並沒有執行。
4. 如何用c語言實現PID演算法的參數計算
這個問題屬於PID的自整定,有簡單的繼電器演算法,我試過,效果不理想。
說了半天,我也沒找到很好用的自整定程序,呵呵。
如果你找到好用的,希望能夠分享一下哦。
5. PID演算法的介紹
在過程式控制制中,按偏差的比例(P)、積分(I)和微分(D)進行控制的PID控制器(亦稱PID調節器)是應用最為廣泛的一種自動控制器。它具有原理簡單,易於實現,適用面廣,控制參數相互獨立,參數的選定比較簡單等優點;而且在理論上可以證明,對於過程式控制制的典型對象──「一階滯後+純滯後」與「二階滯後+純滯後」的控制對象,PID控制器是一種最優控制。PID調節規律是連續系統動態品質校正的一種有效方法,它的參數整定方式簡便,結構改變靈活(PI、PD、…)。
6. 什麼是「PID演算法」
「PID演算法」在過程式控制制中,按偏差的比例(P)、積分(I)和微分(D)進行控制的PID控制器(亦稱PID調節器)是應用最為廣泛的一種自動控制器。
它具有原理簡單,易於實現,適用面廣,控制參數相互獨立,參數的選定比較簡單等優點;而且在理論上可以證明,對於過程式控制制的典型對象──「一階滯後+純滯後」與「二階滯後+純滯後」的控制對象,PID控制器是一種最優控制。
PID調節規律是連續系統動態品質校正的一種有效方法,它的參數整定方式簡便,結構改變靈活(PI、PD、…)。
控制點包含三種比較簡單的PID控制演算法,分別是:增量式演算法,位置式演算法,微分先行。 這三種PID演算法雖然簡單,但各有特點,基本上能滿足一般控制的大多數要求。
PID增量式演算法
離散化公式:
△u(k)= u(k)- u(k-1)
△u(k)=Kp[e(k)-e(k-1)]+Kie(k)+Kd[e(k)-2e(k-1)+e(k-2)]
進一步可以改寫成
△u(k)=Ae(k)-Be(k-1)+Ce(k-2)。
7. pid參數如何整定
PID參數整定是一個復雜的過程,一般需要根據被對象慢慢進行。
常用的方進有擴充臨界比例度整定法和擴充響應曲線法兩種。適合計算機控制用的簡易方法一簡化擴充臨界比例度整定法,該方法是Roberts P.D 於1974 年提出的。
由於該方法只需整定一一個參數即可,故又稱為歸一參數整定法。
(7)pid演算法參數擴展閱讀
模擬PID 演算法中許多行之數字PID是在模擬PID演算法的基礎上,用差分方程代替連續方程,有效的方法都可以用到數字PID 運算中,如數字PID 的參數整定方法源於模擬PID 演算法,化要有一個前提,即采樣周期足夠小。
在這種情況下,采樣系統的PID就非常接近於連續系統的模擬PID 控制。隨著計算機控制技術的發展,數字PID 控製得到了很大的發展,這些演算法既適用於增量型,也適用於位置型,演算法的選用主要取決於執行機構。在這些改進型演算法中,變速積分是目前最好的數字PID 演算法之一。
因為積分分離演算法的數字PID 積分的取含由個被限值確定,屬於開關控制,而安速積分則是線性控制,因而得到了廣泛的應用。不完全微分演算法顯然比較復雜,但其控制特性良好因此它的應用越來越廣泛。
參考資料
網路--PID參數整定
8. PID的演算法技術有哪些
按控制系統分有連續PID、數字PID。
按輸出量調整方式分有位置式PID、增量式PID。
按做積分的有效范圍分有普通PID、積分分離法。
按P、I、D參數的動態設置分有模糊PID、神經網路PID和其它的只能演算法調整出來的PID。