matlab遺傳演算法函數
❶ 在matlab中如何用遺傳演算法求極值
matlab有遺傳演算法工具箱。
核心函數:
(1)function [pop]=initializega(num,bounds,eevalFN,eevalOps,options)--初始種群的生成函數
【輸出參數】
pop--生成的初始種群
【輸入參數】
num--種群中的個體數目
bounds--代表變數的上下界的矩陣
eevalFN--適應度函數
eevalOps--傳遞給適應度函數的參數
options--選擇編碼形式(浮點編碼或是二進制編碼)[precision F_or_B],如
precision--變數進行二進制編碼時指定的精度
F_or_B--為1時選擇浮點編碼,否則為二進制編碼,由precision指定精度)
(2)function [x,endPop,bPop,traceInfo] = ga(bounds,evalFN,evalOps,startPop,opts,...
termFN,termOps,selectFN,selectOps,xOverFNs,xOverOps,mutFNs,mutOps)--遺傳演算法函數
【輸出參數】
x--求得的最優解
endPop--最終得到的種群
bPop--最優種群的一個搜索軌跡
【輸入參數】
bounds--代表變數上下界的矩陣
evalFN--適應度函數
evalOps--傳遞給適應度函數的參數
startPop-初始種群
opts[epsilon prob_ops display]--opts(1:2)等同於initializega的options參數,第三個參數控制是否輸出,一般為0。如[1e-6 1 0]
termFN--終止函數的名稱,如['maxGenTerm']
termOps--傳遞個終止函數的參數,如[100]
selectFN--選擇函數的名稱,如['normGeomSelect']
selectOps--傳遞個選擇函數的參數,如[0.08]
xOverFNs--交叉函數名稱表,以空格分開,如['arithXover heuristicXover simpleXover']
xOverOps--傳遞給交叉函數的參數表,如[2 0;2 3;2 0]
mutFNs--變異函數表,如['boundaryMutation multiNonUnifMutation nonUnifMutation unifMutation']
mutOps--傳遞給交叉函數的參數表,如[4 0 0;6 100 3;4 100 3;4 0 0]
注意】matlab工具箱函數必須放在工作目錄下
【問題】求f(x)=x+10*sin(5x)+7*cos(4x)的最大值,其中0<=x<=9
【分析】選擇二進制編碼,種群中的個體數目為10,二進制編碼長度為20,交叉概率為0.95,變異概率為0.08
【程序清單】
%編寫目標函數
function[sol,eval]=fitness(sol,options)
x=sol(1);
eval=x+10*sin(5*x)+7*cos(4*x);
%把上述函數存儲為fitness.m文件並放在工作目錄下
initPop=initializega(10,[0 9],'fitness');%生成初始種群,大小為10
[x endPop,bPop,trace]=ga([0 9],'fitness',[],initPop,[1e-6 1 1],'maxGenTerm',25,'normGeomSelect',...
[0.08],['arithXover'],[2],'nonUnifMutation',[2 25 3]) %25次遺傳迭代
運算借過為:x =
7.8562 24.8553(當x為7.8562時,f(x)取最大值24.8553)
註:遺傳演算法一般用來取得近似最優解,而不是最優解。
遺傳演算法實例2
【問題】在-5<=Xi<=5,i=1,2區間內,求解
f(x1,x2)=-20*exp(-0.2*sqrt(0.5*(x1.^2+x2.^2)))-exp(0.5*(cos(2*pi*x1)+cos(2*pi*x2)))+22.71282的最小值。
【分析】種群大小10,最大代數1000,變異率0.1,交叉率0.3
【程序清單】
%源函數的matlab代碼
function [eval]=f(sol)
numv=size(sol,2);
x=sol(1:numv);
eval=-20*exp(-0.2*sqrt(sum(x.^2)/numv)))-exp(sum(cos(2*pi*x))/numv)+22.71282;
%適應度函數的matlab代碼
function [sol,eval]=fitness(sol,options)
numv=size(sol,2)-1;
x=sol(1:numv);
eval=f(x);
eval=-eval;
%遺傳演算法的matlab代碼
bounds=ones(2,1)*[-5 5];
[p,endPop,bestSols,trace]=ga(bounds,'fitness')
註:前兩個文件存儲為m文件並放在工作目錄下,運行結果為
p =
0.0000 -0.0000 0.0055
大家可以直接繪出f(x)的圖形來大概看看f(x)的最值是多少,也可是使用優化函數來驗證。matlab命令行執行命令:
fplot('x+10*sin(5*x)+7*cos(4*x)',[0,9])
evalops是傳遞給適應度函數的參數,opts是二進制編碼的精度,termops是選擇maxGenTerm結束函數時傳遞個maxGenTerm的參數,即遺傳代數。xoverops是傳遞給交叉函數的參數。mutops是傳遞給變異函數的參數。
❷ 求遺傳演算法的matlab程序
function
my_ga()
options=gaoptimset;
%設置變數范圍
options=gaoptimset(options,'PopInitRange',[0;9]);
%設置種群大小
options=gaoptimset(options,'PopulationSize',100);
%設置迭代次數
options=gaoptimset(options,'Generations',100);
%選擇選擇函數
options=gaoptimset(options,'SelectionFcn',@selectionroulette);
%選擇交叉函數
options=gaoptimset(options,'CrossoverFcn',@crossoverarithmetic);
%選擇變異函數
options=gaoptimset(options,'MutationFcn',@mutationuniform);
%設置繪圖:解的變化、種群平均值的變化
options=gaoptimset(options,'PlotFcns',{@gaplotbestf});
%執行遺傳演算法,fitness.m是函數文件
[x,fval]=ga(@fitness,1,options)
❸ matlab遺傳演算法怎麼輸入參數
遺傳演算法工具箱的函數GA基本調用格式如下:
X
=
GA(FITNESSFCN,NVARS,A,b,Aeq,beq,lb,ub)
其中前兩個參數分別是適應度函數和變數個數,第三、四個參數(A和b)即為線性不等式約束。
你現在需要做的是,增加幾個線性約束條件:
x1
<
x2
x2
<
x3
x3
<
x4
x4
<
x5
不過,有個問題,遺傳演算法等優化工具對不等式約束的要求,都必須是閉集(帶等號的不等式),也就是說,要的是類似下面這樣的約束:
x1
<=
x2
x2
<=
x3
x3
<=
x4
x4
<=
x5
❹ 如何用matlab做遺傳演算法
遺傳演算法在matlab里有兩個函數,分別是ga和gaoptimset,前者用來調用遺傳演算法,後者用來設定遺傳演算法的參數,具體內容可以doc ga查看,遺傳演算法有哪些參數可以直接在命令窗口輸入gaoptimset查看,祝好。
❺ matlab遺傳演算法工具箱函數的參數問題
這個100在這里是起到限定條件的作用。如果g1>0或者g2>0這種情況,就不進行計算了,直接給出誤差值100,這樣,g1>0或者g2>0這種情況基本上就排除了,因為誤差值非常高。這個數值可以改,改的比較大就可以了。目的是把結果中的g1>0和g2>0情況去掉。
initialPopulation是第一代種群的意思,這個數值就是
遺傳演算法
起點的位置。這個值怎麼取沒有固定的說法,如果你想手動賦值而不是讓計算機自己生成,
那麼你需要創建一個矩陣,行數等於populationSize,就是種群數量,列數等於輸入變數的數量,在你的例子中是2。
初始值的作用很大,越復雜的模型,對於初值的要求就越高。
❻ matlab的遺傳演算法
matlab自帶的有遺傳演算法工具箱,也就是兩個函數,分別是 x = ga(fitnessfcn,nvars,A,b,Aeq,beq,LB,UB,nonlcon,options)options = gaoptimset('param1',value1,'param2',value2,...)在幫助文件(doc ga/gaoptimset)裡面自己好還看看它的用法就可以了,每一個參數都有詳細的說明,應該可以幫助到你。
❼ 在matlab中如何用遺傳演算法求解函數和的最小值
用遺傳演算法求已知函數的最小值點的方法:1、首先建立自定義函數,f(x)ga_fun=@(x)11*sin(6*x)+7*cos(5*x);2、其二用ga()函數求解最小值[x,fval,exitflag]=ga(ga_fun,1,[],[],[],[],lb) 3、然後用ezplot()函數或plot()函數,繪出其函數f(x)的圖形及最小值點4、運行結果5、執行代碼
❽ MATLAB遺傳演算法
function ret=Code(lenchrom,bound)
%本函數將變數編碼成染色體,用於隨機初始化一個種群
% lenchrom input : 染色體長度
% bound input : 變數的取值范圍
% ret output: 染色體的編碼值
flag=0;
while flag==0
pick=rand(1,length(lenchrom));
ret=bound(:,1)'+(bound(:,2)-bound(:,1))'.*pick; %線性插值
flag=test(lenchrom,bound,ret); %檢驗染色體的可行性
end
function ret=Cross(pcross,lenchrom,chrom,sizepop,bound)
%本函數完成交叉操作
% pcorss input : 交叉概率
% lenchrom input : 染色體的長度
% chrom input : 染色體群
% sizepop input : 種群規模
% ret output : 交叉後的染色體
for i=1:sizepop
% 隨機選擇兩個染色體進行交叉
pick=rand(1,2);
while prod(pick)==0
pick=rand(1,2);
end
index=ceil(pick.*sizepop);
% 交叉概率決定是否進行交叉
pick=rand;
while pick==0
pick=rand;
end
if pick>pcross
continue;
end
flag=0;
while flag==0
% 隨機選擇交叉位置
pick=rand;
while pick==0
pick=rand;
end
pos=ceil(pick.*sum(lenchrom)); %隨機選擇進行交叉的位置,即選擇第幾個變數進行交叉,注意:兩個染色體交叉的位置相同
pick=rand; %交叉開始
v1=chrom(index(1),pos);
v2=chrom(index(2),pos);
chrom(index(1),pos)=pick*v2+(1-pick)*v1;
chrom(index(2),pos)=pick*v1+(1-pick)*v2; %交叉結束
flag1=test(lenchrom,bound,chrom(index(1),:)); %檢驗染色體1的可行性
flag2=test(lenchrom,bound,chrom(index(2),:)); %檢驗染色體2的可行性
if flag1*flag2==0
flag=0;
else flag=1;
end %如果兩個染色體不是都可行,則重新交叉
end
end
ret=chrom;
clc
clear all
% warning off
%% 遺傳演算法參數
maxgen=50; %進化代數
sizepop=100; %種群規模
pcross=[0.6]; %交叉概率
pmutation=[0.1]; %變異概率
lenchrom=[1 1]; %變數字串長度
bound=[-5 5;-5 5]; %變數范圍
%% 個體初始化
indivials=struct('fitness',zeros(1,sizepop), 'chrom',[]); %種群結構體
avgfitness=[]; %種群平均適應度
bestfitness=[]; %種群最佳適應度
bestchrom=[]; %適應度最好染色體
% 初始化種群
for i=1:sizepop
indivials.chrom(i,:)=Code(lenchrom,bound); %隨機產生個體
x=indivials.chrom(i,:);
indivials.fitness(i)= (x(1)*exp(-(x(1)^2 + x(2)^2)));
%-20*exp(-0.2*sqrt((x(1)^2+x(2)^2)/2))-exp((cos(2*pi*x(1))+cos(2*pi*x(2)))/2)+20+2.71289
% 這個是我的測試函數
% 如果有這個函數的話,可以得到最優值
end
%找最好的染色體
[bestfitness bestindex]=min(indivials.fitness);
bestchrom=indivials.chrom(bestindex,:); %最好的染色體
avgfitness=sum(indivials.fitness)/sizepop; %染色體的平均適應度
% 記錄每一代進化中最好的適應度和平均適應度
trace=[];
%% 進化開始
for i=1:maxgen
% 選擇操作
indivials=Select(indivials,sizepop);
avgfitness=sum(indivials.fitness)/sizepop;
% 交叉操作
indivials.chrom=Cross(pcross,lenchrom,indivials.chrom,sizepop,bound);
% 變異操作
indivials.chrom=Mutation(pmutation,lenchrom,indivials.chrom,sizepop,[i maxgen],bound);
% 計算適應度
for j=1:sizepop
x=indivials.chrom(j,:);
indivials.fitness(j)=(x(1)*exp(-(x(1)^2 + x(2)^2)));
%-20*exp(-0.2*sqrt((x(1)^2+x(2)^2)/2))-exp((cos(2*pi*x(1))+cos(2*pi*x(2)))/2)+20+2.71289
% -20*exp(-0.2*sqrt((x(1)^2+x(2)^2)/2))-exp((cos(2*pi*x(1))+cos(2*pi*x(2)))/2)+20+2.71289;
end
%找到最小和最大適應度的染色體及它們在種群中的位置
[newbestfitness,newbestindex]=min(indivials.fitness);
[worestfitness,worestindex]=max(indivials.fitness);
% 代替上一次進化中最好的染色體
if bestfitness>newbestfitness
bestfitness=newbestfitness;
bestchrom=indivials.chrom(newbestindex,:);
end
indivials.chrom(worestindex,:)=bestchrom;
indivials.fitness(worestindex)=bestfitness;
avgfitness=sum(indivials.fitness)/sizepop;
trace=[trace;avgfitness bestfitness]; %記錄每一代進化中最好的適應度和平均適應度
end
%進化結束
%% 結果顯示
[r c]=size(trace);
figure
plot([1:r]',trace(:,1),'r-',[1:r]',trace(:,2),'b--');
title(['函數值曲線 ' '終止代數=' num2str(maxgen)],'fontsize',12);
xlabel('進化代數','fontsize',12);ylabel('函數值','fontsize',12);
legend('各代平均值','各代最佳值','fontsize',12);
ylim([-0.5 5])
disp('函數值 變數');
% 窗口顯示
disp([bestfitness x]);
❾ 用matlab實現的遺傳演算法
f=inline('-(x+10*sin(5*x)+7*cos(4*x))');
[x,val]=ga(f,1,[],[],[],[],0,9);
x,val=-val%註:由於遺傳法的不確定性,每次得到的解可能不同。
————————————————————————————————
ga是matlab自帶的遺傳工具箱中的遺傳演算法函數,其中已經用到了選擇、交叉、變異,你如果想知道其具體是怎麼實現的,可以自己打開ga的源程序去看。