當前位置:首頁 » 操作系統 » 模型演算法優化

模型演算法優化

發布時間: 2022-07-19 08:01:43

⑴ 對多指標優化一般採用什麼模型或者演算法

對於控制器參數的多指標優化問題,提出了一種新型優化設計方法。通過分別設計的各個性能指標的滿意度函數,反映出各性能指標對控制系統的具體要求;並用綜合滿意度函數的設計,反映出對控制目標的綜合要求。由此給出了一種優化模型。

⑵ 所有優化演算法都需要模型嗎

你好,假設要求 y=f(x) 的極值,這里的 f 即你提到的「模型」。如果 f 為未知黑盒,但可能通過采樣 (x, y) 而部分觀察到,那麼可以通過啟發式搜索(如粒子群優化、遺傳演算法、模擬退火等)迭代尋找極值(即有選擇地試錯)。不過此法對復雜的 f (多峰、非線性等)並不保證找到全局極值,但通常能在較短的時間內得到一個較好的解。

⑶ tensorflow的各種優化演算法怎麼實現的

如何高效的學習TensorFlow代碼?目前TensorFlow代碼已超過40w行,從代碼量上來看,絕不是一個能夠迅速上手的小項目。所以,想要精通TensorFlow的同學需要做好心理准備。對於想要學習TensorFlow(以下簡稱TF)的人,根據目的不同,可以簡單分為以下2類:1.研究學者,僅僅需要TF這個平台實現深度學習演算法,無需了解太多底層原理2.好學的行業內人員(比如我⊙﹏⊙),不僅需要了解演算法模型,同時還要熟悉TF平台的原理。在運算元、通信、模型優化等方面進行平台的二次開發的人。研究學者:你們可以考慮使用Keras,python寫的深度神經網路庫,已經實現了絕大部分神經網路,如:RNN、GRU、LSTM,CNN,Pooling,Full-Connected,以及sigmoid、tanh、Relu、PRelu、SRelu等各種激活函數。並且採用TF/Theano作為後端計算引擎,自己本身擁有一套更高層的API,可以同時跑在TF/Theano平台上。相對於TF來說,這個學習壓力小了很多,我們公司負責演算法的同事也是用Keras來寫模型,然後我再用TF的API來實現分布式部署。附:開發人員:對於我們這類人來說,首先需要弄清平台的很多名稱、概念、定義,@賈揚清曾說過TF有太多的Abstraction需要學習。誠然,這加大了我們的學習難度。但是,這也說明Google是想要把這個平台做大做強的,所以才會花時間去設計這一套框架和統一的結構。特別是讀了部分源碼後,更有這種感觸。那麼,具體要怎麼開始呢?極客學院有翻譯部分TF的官方文檔,對於初步了解Tensor、DAG、Operator、Variable、Device、Optimizer等是幫助的。在看完這些概念後,有一個MNIST的例子程序作為TF的入門。這個樣例用一個簡單的Softmax實現了手寫體數字識別的神經網路,只有一層參數。同時還介紹了Session、tf.placeholder、圖的計算等重要概念。在看完這個樣例後,如果理解了DAG和Session,可以繼續看用卷積神經網路實現的MNIST,准確率上升到了99%,相對於單層Softmax的92%左右,已經接近目前最高的准確率了。TFv0.8發布了分布式模型,我也研究了將近1個月,才把Seq2seq機器翻譯改造成了分布式,但是現在公司不讓發布出來ORZ。好消息是,我改寫了社區的MNIST分布式程序,並且已經合並到master分支了。所以,如果想要繼續學習分布式的話,我建議可以看一下那份代碼。比較遺憾的是,極客學院目前沒有翻譯分布式的教程,所以大家得移步TF官網(貌似被牆了)。由於分布式的資料較少,我這里簡單梳理下概念,大家在官網會看到他們的定義:TF採用了PS/Worker的結構來定義集群,其中PS(parameterserver):存儲variable(模型參數),主要負責參數更新和發放;Worker:存儲operator,主要負責圖計算和梯度計算(TF使用Optimizer實現了自動化的梯度計算);job:由於工作類型不同,用job_name來區分ps和workertask:對於每個worker來說,具體做什麼任務(算什麼圖)也有可能不同,用task_index區分device:指具體的CPU/GPU,通常PS綁定到CPU上,Worker綁定到GPU上,各取所長。syncReplicaOptimizer:同步優化器,其本質仍然是用普通優化器進行梯度計算,但是通過Queue機制和Coordinator多線程協同實現了所有worker的梯度匯總和平均,最終將梯度傳回PS進行參數更新。以上幾個概念對於分布式的理解非常重要。當然,想要完全弄懂,還得不斷的看文檔和源碼。源碼我推薦幾個python目錄下非常值得看的基礎類定義:framework/Ops.py:定義了Tensor、Graph、Opreator類等Ops/Variables.py:定義了Variable類

⑷ 演算法優化的意義

演算法優化的意義:

一般來說,演算法優化是進行網站建設或者是數據模型建設時,常用的一種優化模式。演算法優化的目的和意義在於:提升網站的面向能力、圖片的展現能力、以及提升讀者的便利性。

優化演算法有很多,關鍵是針對不同的優化問題,例如可行解變數的取值(連續還是離散)、目標函數和約束條件的復雜程度(線性還是非線性)等,應用不同的演算法。
對於連續和線性等較簡單的問題,可以選擇一些經典演算法,如梯度、矩陣、乘數、單純形法、梯度下降法等,而這些也是演算法優化和另貓電商中比較常見的。而對於更復雜的問題,則可考慮用一些智能優化演算法,如遺傳演算法和蟻群演算法,此外還包括模擬、禁忌搜索、粒子群演算法等。

⑸ 大家說下,3d模型太大怎麼優化

3d模型過大將導致渲染卡頓或者渲染時間長,影響工作效率。可以通過以下方法來優化;

  1. 刪除場景中不需要的物體,限制場景面數;

  2. 檢查場景中的材質,優化掉不兼容或者復雜的材質;

  3. 檢查燈光設置,減少不必要的燈光,注意燈光細分參數設置不要過高;

  4. 高精度模型、重復性高的模型可以轉換成vray代理文件;

  5. 渲染成圖前先渲染光子文件,可更具場景需求降低抗鋸齒級別;

  6. 對場景物體進行分層渲染;

⑹ 3D模型太大怎麼輕量化

3d模型太大,很容易導致渲染卡頓或者渲染不出來,可以參考以下方式進行優化:

  1. 刪除場景中不需要的物體,清除緩存垃圾,限制場景面數;

  2. 檢查場景中的材質,優化掉復雜或者不兼容的材質;

  3. 減少不必要的燈光設置,不要將燈光細分參數設置得過高;

  4. 高精度模型、重復性高的模型可以轉換成vray代理文件。

⑺ 如何對XGBoost模型進行參數調優

XGBoost參數調優完全指南(附Python代碼)
譯註:文內提供的代碼和運行結果有一定差異,可以從這里完整代碼對照參考。另外,我自己跟著教程做的時候,發現我的庫無法解析字元串類型的特徵,所以只用其中一部分特徵做的,具體數值跟文章中不一樣,反而可以幫助理解文章。所以大家其實也可以小小修改一下代碼,不一定要完全跟著教程做~ ^0^
需要提前安裝好的庫:簡介如果你的預測模型表現得有些不盡如人意,那就用XGBoost吧。XGBoost演算法現在已經成為很多數據工程師的重要武器。它是一種十分精緻的演算法,可以處理各種不規則的數據。
構造一個使用XGBoost的模型十分簡單。但是,提高這個模型的表現就有些困難(至少我覺得十分糾結)。這個演算法使用了好幾個參數。所以為了提高模型的表現,參數的調整十分必要。在解決實際問題的時候,有些問題是很難回答的——你需要調整哪些參數?這些參數要調到什麼值,才能達到理想的輸出?
這篇文章最適合剛剛接觸XGBoost的人閱讀。在這篇文章中,我們會學到參數調優的技巧,以及XGboost相關的一些有用的知識。以及,我們會用Python在一個數據集上實踐一下這個演算法。你需要知道的XGBoost(eXtreme Gradient Boosting)是Gradient Boosting演算法的一個優化的版本。特別鳴謝:我個人十分感謝Mr Sudalai Rajkumar (aka SRK)大神的支持,目前他在AV Rank中位列第二。如果沒有他的幫助,就沒有這篇文章。在他的幫助下,我們才能給無數的數據科學家指點迷津。給他一個大大的贊!內容列表1、XGBoost的優勢
2、理解XGBoost的參數
3、調整參數(含示例)1、XGBoost的優勢XGBoost演算法可以給預測模型帶來能力的提升。當我對它的表現有更多了解的時候,當我對它的高准確率背後的原理有更多了解的時候,我發現它具有很多優勢:1、正則化標准GBM的實現沒有像XGBoost這樣的正則化步驟。正則化對減少過擬合也是有幫助的。 實際上,XGBoost以「正則化提升(regularized boosting)」技術而聞名。2、並行處理XGBoost可以實現並行處理,相比GBM有了速度的飛躍。 不過,眾所周知,Boosting演算法是順序處理的,它怎麼可能並行呢?每一課樹的構造都依賴於前一棵樹,那具體是什麼讓我們能用多核處理器去構造一個樹呢?我希望你理解了這句話的意思。 XGBoost 也支持Hadoop實現。3、高度的靈活性XGBoost 允許用戶定義自定義優化目標和評價標准 它對模型增加了一個全新的維度,所以我們的處理不會受到任何限制。4、缺失值處理XGBoost內置處理缺失值的規則。 用戶需要提供一個和其它樣本不同的值,然後把它作為一個參數傳進去,以此來作為缺失值的取值。XGBoost在不同節點遇到缺失值時採用不同的處理方法,並且會學習未來遇到缺失值時的處理方法。5、剪枝當分裂時遇到一個負損失時,GBM會停止分裂。因此GBM實際上是一個貪心演算法。 XGBoost會一直分裂到指定的最大深度(max_depth),然後回過頭來剪枝。如果某個節點之後不再有正值,它會去除這個分裂。 這種做法的優點,當一個負損失(如-2)後面有個正損失(如+10)的時候,就顯現出來了。GBM會在-2處停下來,因為它遇到了一個負值。但是XGBoost會繼續分裂,然後發現這兩個分裂綜合起來會得到+8,因此會保留這兩個分裂。6、內置交叉驗證XGBoost允許在每一輪boosting迭代中使用交叉驗證。因此,可以方便地獲得最優boosting迭代次數。 而GBM使用網格搜索,只能檢測有限個值。7、在已有的模型基礎上繼續XGBoost可以在上一輪的結果上繼續訓練。這個特性在某些特定的應用上是一個巨大的優勢。 sklearn中的GBM的實現也有這個功能,兩種演算法在這一點上是一致的。相信你已經對XGBoost強大的功能有了點概念。注意這是我自己總結出來的幾點,你如果有更多的想法,盡管在下面評論指出,我會更新這個列表的!2、XGBoost的參數XGBoost的作者把所有的參數分成了三類:
1、通用參數:宏觀函數控制。
2、Booster參數:控制每一步的booster(tree/regression)。
3、學習目標參數:控制訓練目標的表現。
在這里我會類比GBM來講解,所以作為一種基礎知識。通用參數這些參數用來控制XGBoost的宏觀功能。1、booster[默認gbtree]選擇每次迭代的模型,有兩種選擇:
gbtree:基於樹的模型
gbliner:線性模型2、silent[默認0]當這個參數值為1時,靜默模式開啟,不會輸出任何信息。 一般這個參數就保持默認的0,因為這樣能幫我們更好地理解模型。3、nthread[默認值為最大可能的線程數]這個參數用來進行多線程式控制制,應當輸入系統的核數。 如果你希望使用CPU全部的核,那就不要輸入這個參數,演算法會自動檢測它。
還有兩個參數,XGBoost會自動設置,目前你不用管它。接下來咱們一起看booster參數。booster參數盡管有兩種booster可供選擇,我這里只介紹tree booster,因為它的表現遠遠勝過linear booster,所以linear booster很少用到。1、eta[默認0.3]和GBM中的 learning rate 參數類似。 通過減少每一步的權重,可以提高模型的魯棒性。 典型值為0.01-0.2。2、min_child_weight[默認1]決定最小葉子節點樣本權重和。 和GBM的 min_child_leaf 參數類似,但不完全一樣。XGBoost的這個參數是最小樣本權重的和,而GBM參數是最小樣本總數。 這個參數用於避免過擬合。當它的值較大時,可以避免模型學習到局部的特殊樣本。 但是如果這個值過高,會導致欠擬合。這個參數需要使用CV來調整。3、max_depth[默認6]和GBM中的參數相同,這個值為樹的最大深度。 這個值也是用來避免過擬合的。max_depth越大,模型會學到更具體更局部的樣本。 需要使用CV函數來進行調優。 典型值:3-104、max_leaf_nodes樹上最大的節點或葉子的數量。 可以替代max_depth的作用。因為如果生成的是二叉樹,一個深度為n的樹最多生成n2個葉子。 如果定義了這個參數,GBM會忽略max_depth參數。5、gamma[默認0]在節點分裂時,只有分裂後損失函數的值下降了,才會分裂這個節點。Gamma指定了節點分裂所需的最小損失函數下降值。 這個參數的值越大,演算法越保守。這個參數的值和損失函數息息相關,所以是需要調整的。6、max_delta_step[默認0]這參數限制每棵樹權重改變的最大步長。如果這個參數的值為0,那就意味著沒有約束。如果它被賦予了某個正值,那麼它會讓這個演算法更加保守。 通常,這個參數不需要設置。但是當各類別的樣本十分不平衡時,它對邏輯回歸是很有幫助的。 這個參數一般用不到,但是你可以挖掘出來它更多的用處。7、subsample[默認1]和GBM中的subsample參數一模一樣。這個參數控制對於每棵樹,隨機采樣的比例。 減小這個參數的值,演算法會更加保守,避免過擬合。但是,如果這個值設置得過小,它可能會導致欠擬合。 典型值:0.5-18、colsample_bytree[默認1]和GBM裡面的max_features參數類似。用來控制每棵隨機采樣的列數的佔比(每一列是一個特徵)。 典型值:0.5-19、colsample_bylevel[默認1]用來控制樹的每一級的每一次分裂,對列數的采樣的佔比。 我個人一般不太用這個參數,因為subsample參數和colsample_bytree參數可以起到相同的作用。但是如果感興趣,可以挖掘這個參數更多的用處。10、lambda[默認1]權重的L2正則化項。(和Ridge regression類似)。 這個參數是用來控制XGBoost的正則化部分的。雖然大部分數據科學家很少用到這個參數,但是這個參數在減少過擬合上還是可以挖掘出更多用處的。11、alpha[默認1]權重的L1正則化項。(和Lasso regression類似)。 可以應用在很高維度的情況下,使得演算法的速度更快。12、scale_pos_weight[默認1]在各類別樣本十分不平衡時,把這個參數設定為一個正值,可以使演算法更快收斂。學習目標參數這個參數用來控制理想的優化目標和每一步結果的度量方法。1、objective[默認reg:linear]這個參數定義需要被最小化的損失函數。最常用的值有:
binary:logistic 二分類的邏輯回歸,返回預測的概率(不是類別)。 multi:softmax 使用softmax的多分類器,返回預測的類別(不是概率)。
在這種情況下,你還需要多設一個參數:num_class(類別數目)。 multi:softprob 和multi:softmax參數一樣,但是返回的是每個數據屬於各個類別的概率。2、eval_metric[默認值取決於objective參數的取值]對於有效數據的度量方法。 對於回歸問題,默認值是rmse,對於分類問題,默認值是error。 典型值有:
rmse 均方根誤差(∑Ni=1?2N??????√) mae 平均絕對誤差(∑Ni=1|?|N) logloss 負對數似然函數值 error 二分類錯誤率(閾值為0.5) merror 多分類錯誤率 mlogloss 多分類logloss損失函數 auc 曲線下面積3、seed(默認0)隨機數的種子 設置它可以復現隨機數據的結果,也可以用於調整參數如果你之前用的是Scikit-learn,你可能不太熟悉這些參數。但是有個好消息,python的XGBoost模塊有一個sklearn包,XGBClassifier。這個包中的參數是按sklearn風格命名的。會改變的函數名是:
1、eta ->learning_rate
2、lambda->reg_lambda
3、alpha->reg_alpha
你肯定在疑惑為啥咱們沒有介紹和GBM中的』n_estimators』類似的參數。XGBClassifier中確實有一個類似的參數,但是,是在標准XGBoost實現中調用擬合函數時,把它作為』num_boosting_rounds』參數傳入。調整參數(含示例)我已經對這些數據進行了一些處理:City變數,因為類別太多,所以刪掉了一些類別。 DOB變數換算成年齡,並刪除了一些數據。 增加了 EMI_Loan_Submitted_Missing 變數。如果EMI_Loan_Submitted變數的數據缺失,則這個參數的值為1。否則為0。刪除了原先的EMI_Loan_Submitted變數。 EmployerName變數,因為類別太多,所以刪掉了一些類別。 因為Existing_EMI變數只有111個值缺失,所以缺失值補充為中位數0。 增加了 Interest_Rate_Missing 變數。如果Interest_Rate變數的數據缺失,則這個參數的值為1。否則為0。刪除了原先的Interest_Rate變數。 刪除了Lead_Creation_Date,從直覺上這個特徵就對最終結果沒什麼幫助。 Loan_Amount_Applied, Loan_Tenure_Applied 兩個變數的缺項用中位數補足。 增加了 Loan_Amount_Submitted_Missing 變數。如果Loan_Amount_Submitted變數的數據缺失,則這個參數的值為1。否則為0。刪除了原先的Loan_Amount_Submitted變數。 增加了 Loan_Tenure_Submitted_Missing 變數。如果 Loan_Tenure_Submitted 變數的數據缺失,則這個參數的值為1。否則為0。刪除了原先的 Loan_Tenure_Submitted 變數。 刪除了LoggedIn, Salary_Account 兩個變數 增加了 Processing_Fee_Missing 變數。如果 Processing_Fee 變數的數據缺失,則這個參數的值為1。否則為0。刪除了原先的 Processing_Fee 變數。 Source前兩位不變,其它分成不同的類別。 進行了量化和獨熱編碼(一位有效編碼)。如果你有原始數據,可以從資源庫裡面data_preparation的Ipython notebook 文件,然後自己過一遍這些步驟。首先,import必要的庫,然後載入數據。#Import libraries:
import pandas as pd
import numpy as np
import xgboost as xgb
from xgboost.sklearn import XGBClassifier
from sklearn import cross_validation, metrics #Additional scklearn functions
from sklearn.grid_search import GridSearchCV #Perforing grid search

import matplotlib.pylab as plt
%matplotlib inline
from matplotlib.pylab import rcParams
rcParams['figure.figsize'] = 12, 4

train = pd.read_csv('train_modified.csv')
target = 'Disbursed'
IDcol = 'ID'

注意我import了兩種XGBoost:xgb - 直接引用xgboost。接下來會用到其中的「cv」函數。 XGBClassifier - 是xgboost的sklearn包。這個包允許我們像GBM一樣使用Grid Search 和並行處理。在向下進行之前,我們先定義一個函數,它可以幫助我們建立XGBoost models 並進行交叉驗證。好消息是你可以直接用下面的函數,以後再自己的models中也可以使用它。def modelfit(alg, dtrain, predictors,useTrainCV=True, cv_folds=5, early_stopping_rounds=50):
if useTrainCV:
xgb_param = alg.get_xgb_params()
xgtrain = xgb.DMatrix(dtrain[predictors].values, label=dtrain[target].values)
cvresult = xgb.cv(xgb_param, xgtrain, num_boost_round=alg.get_params()['n_estimators'], nfold=cv_folds,
metrics='auc', early_stopping_rounds=early_stopping_rounds, show_progress=False)
alg.set_params(n_estimators=cvresult.shape[0])

#Fit the algorithm on the data
alg.fit(dtrain[predictors], dtrain['Disbursed'],eval_metric='auc')

#Predict training set:
dtrain_predictions = alg.predict(dtrain[predictors])
dtrain_predprob = alg.predict_proba(dtrain[predictors])[:,1]

#Print model report:
print "\nModel Report"
print "Accuracy : %.4g" % metrics.accuracy_score(dtrain['Disbursed'].values, dtrain_predictions)
print "AUC Score (Train): %f" % metrics.roc_auc_score(dtrain['Disbursed'], dtrain_predprob)

feat_imp = pd.Series(alg.booster().get_fscore()).sort_values(ascending=False)
feat_imp.plot(kind='bar', title='Feature Importances')
plt.ylabel('Feature Importance Score')

這個函數和GBM中使用的有些許不同。不過本文章的重點是講解重要的概念,而不是寫代碼。如果哪裡有不理解的地方,請在下面評論,不要有壓力。注意xgboost的sklearn包沒有「feature_importance」這個量度,但是get_fscore()函數有相同的功能。參數調優的一般方法。我們會使用和GBM中相似的方法。需要進行如下步驟:
選擇較高的學習速率(learning rate)。一般情況下,學習速率的值為0.1。但是,對於不同的問題,理想的學習速率有時候會在0.05到0.3之間波動。選擇對應於此學習速率的理想決策樹數量。XGBoost有一個很有用的函數「cv」,這個函數可以在每一次迭代中使用交叉驗證,並返回理想的決策樹數量。
2. 對於給定的學習速率和決策樹數量,進行決策樹特定參數調優(max_depth, min_child_weight, gamma, subsample, colsample_bytree)。在確定一棵樹的過程中,我們可以選擇不同的參數,待會兒我會舉例說明。
3. xgboost的正則化參數的調優。(lambda, alpha)。這些參數可以降低模型的復雜度,從而提高模型的表現。
4. 降低學習速率,確定理想參數。咱們一起詳細地一步步進行這些操作。第一步:確定學習速率和tree_based 參數調優的估計器數目。為了確定boosting 參數,我們要先給其它參數一個初始值。咱們先按如下方法取值:
1、max_depth = 5 :這個參數的取值最好在3-10之間。我選的起始值為5,但是你也可以選擇其它的值。起始值在4-6之間都是不錯的選擇。
2、min_child_weight = 1:在這里選了一個比較小的值,因為這是一個極不平衡的分類問題。因此,某些葉子節點下的值會比較小。
3、gamma = 0: 起始值也可以選其它比較小的值,在0.1到0.2之間就可以。這個參數後繼也是要調整的。
4、subsample,colsample_bytree = 0.8: 這個是最常見的初始值了。典型值的范圍在0.5-0.9之間。
5、scale_pos_weight = 1: 這個值是因為類別十分不平衡。
注意哦,上面這些參數的值只是一個初始的估計值,後繼需要調優。這里把學習速率就設成默認的0.1。然後用xgboost中的cv函數來確定最佳的決策樹數量。前文中的函數可以完成這個工作。#Choose all predictors except target IDcols
predictors = [x for x in train.columns if x not in [target,IDcol]]
xgb1 = XGBClassifier(
learning_rate =0.1,
n_estimators=1000,
max_depth=5,
min_child_weight=1,
gamma=0,
subsample=0.8,
colsample_bytree=0.8,
objective= 'binary:logistic',
nthread=4,
scale_pos_weight=1,
seed=27)
modelfit(xgb1, train, predictors)
從輸出結果可以看出,在學習速率為0.1時,理想的決策樹數目是140。這個數字對你而言可能比較高,當然這也取決於你的系統的性能。注意:在AUC(test)這里你可以看到測試集的AUC值。但是如果你在自己的系統上運行這些命令,並不會出現這個值。因為數據並不公開。這里提供的值僅供參考。生成這個值的代碼部分已經被刪掉了。<喎?"/kf/ware/vc/" target="_blank" class="keylink">="第二步-maxdepth-和-minweight-參數調優">第二步: max_depth 和 min_weight 參數調優我們先對這兩個參數調優,是因為它們對最終結果有很大的影響。首先,我們先大范圍地粗調參數,然後再小范圍地微調。
注意:在這一節我會進行高負荷的柵格搜索(grid search),這個過程大約需要15-30分鍾甚至更久,具體取決於你系統的性能。你也可以根據自己系統的性能選擇不同的值。param_test1 = {
'max_depth':range(3,10,2),
'min_child_weight':range(1,6,2)
}
gsearch1 = GridSearchCV(estimator = XGBClassifier( learning_rate =0.1, n_estimators=140, max_depth=5,
min_child_weight=1, gamma=0, subsample=0.8, colsample_bytree=0.8,
objective= 'binary:logistic', nthread=4, scale_pos_weight=1, seed=27),
param_grid = param_test1, scoring='roc_auc',n_jobs=4,iid=False, cv=5)
gsearch1.fit(train[predictors],train[target])
gsearch1.grid_scores_, gsearch1.best_params_, gsearch1.best_score_

⑻ 得到損失函數後 如何優化模型

常用的優化方法有
對損失函數的優化:
當我們對分類的Loss進行改進的時候,我們要通過梯度下降,每次優化一個step大小的梯度,這個時候我們就要求Loss對每個權重矩陣的偏導,然後應用鏈式法則。
最小二乘法(主要是說線性回歸中的優化演算法)梯度下降法、牛頓法、擬牛頓法、共軛梯度法
詳細說一下梯度下降法
在求解機器學習演算法的模型參數,即無約束優化問題時,梯度下降(Gradient Descent)是最常採用的方法之一,梯度下降不一定能夠找到全局的最優解,有可能是一個局部最優解。當然,如果損失函數是凸函數,梯度下降法得到的解就一定是全局最優解。
1)梯度
在微積分裡面,對多元函數的參數求∂偏導數,把求得的各個參數的偏導數以向量的形式寫出來,就是梯度。
那麼這個梯度向量求出來有什麼意義呢?他的意義從幾何意義上講,就是函數變化增加最快的地方。或者說,沿著梯度向量的方向,更加容易找到函數的最大值。反過來說,沿著梯度向量相反的方向,也就是 -(∂f/∂x0, ∂f/∂y0)T的方向,梯度減少最快,也就是更加容易找到函數的最小值。
2)梯度下降與梯度上升
在機器學習演算法中,在最小化損失函數時,可以通過梯度下降法來一步步的迭代求解,通過啟發式的方式一步步迭代求解函數的最小值,得到最小化的損失函數,和模型參數值。反過來,如果我們需要求解損失函數的最大值,這時就需要用梯度上升法來迭代了。
梯度下降法和梯度上升法是可以互相轉化的。比如我們需要求解損失函數f(θ)的最小值,這時我們需要用梯度下降法來迭代求解。但是實際上,我們可以反過來求解損失函數 -f(θ)的最大值,這時梯度上升法就派上用場了。
3)梯度下降的演算法調優
在使用梯度下降時,需要進行調優。
第一、演算法的步長選擇。在前面的演算法描述中,我提到取步長為1,但是實際上取值取決於數據樣本,可以多取一些值,從大到小,分別運行演算法,看看迭代效果,如果損失函數的值在變小,說明取值有效,否則要增大步長。前面說了。步長太大,會導致迭代過快,甚至有可能錯過最優解。步長太小,迭代速度太慢,很長時間演算法都不能結束。所以演算法的步長需要多次運行後才能得到一個較為優的值。
第二、演算法參數的初始值選擇。初始值不同,獲得的最小值也有可能不同,因此梯度下降求得的只是局部最小值;當然如果損失函數是凸函數則一定是最優解。由於有局部最優解的風險,需要多次用不同初始值運行演算法,觀測損失函數的最小值,選擇損失函數最小化的初值。
第三、歸一化。由於樣本不同特徵的取值范圍不一樣,可能導致迭代很慢,為了減少特徵取值的影響,可以對特徵數據歸一化,也就是對於每個特徵x,求出它的期望x¯和標准差std(x),然後轉化為x−x¯¯¯std(x)x−x¯std(x)
這樣特徵的新期望為0,新方差為1,迭代次數可以大大加快。

⑼ 想知道優化演算法是什麼

優化演算法是通過改善計算方式來最小化或最大化損失函數E(x)。模型內部有些參數是用來計算測試集中目標值Y的真實值和預測值的偏差程度的,基於這些參數就形成了損失函數E(x),比如說,權重(W)和偏差(b)就是這樣的內部參數,一般用於計算輸出值,在訓練神經網路模型時起到主要作用。

優化演算法分的分類

一階優化演算法是使用各參數的梯度值來最小化或最大化損失函數E(x),最常用的一階優化演算法是梯度下降。函數梯度導數dy/dx的多變數表達式,用來表示y相對於x的瞬時變化率。

二階優化演算法是使用了二階導數也叫做Hessian方法來最小化或最大化損失函數,由於二階導數的計算成本很高,所以這種方法並沒有廣泛使用。

⑽ 優化模型的類型

http://www.auest.com/sxjm/YOUHUA.PPT
http://www.cws.net.cn/Journal/slxb/199906/15.htm
希望對你有些幫助

熱點內容
凸包的graham演算法 發布:2025-01-21 12:00:00 瀏覽:146
jsonobject轉java對象 發布:2025-01-21 12:00:00 瀏覽:306
macpython3默認 發布:2025-01-21 11:58:26 瀏覽:261
芒果伺服器是什麼意思 發布:2025-01-21 11:57:54 瀏覽:40
微信聊天伺服器錯誤什麼意思 發布:2025-01-21 11:56:13 瀏覽:460
linuxtomcat不能訪問 發布:2025-01-21 11:47:11 瀏覽:394
刷新器需要什麼配置 發布:2025-01-21 11:09:28 瀏覽:972
jedis源碼 發布:2025-01-21 11:08:24 瀏覽:890
edm資料庫 發布:2025-01-21 11:05:54 瀏覽:371
QQ咋樣加密 發布:2025-01-21 11:05:45 瀏覽:164