演算法核心崗位
1. 演算法工程師是什麼職位
公有制工程師證和非公有制工程師證現在是沒區別的,都是人類資源和社會保障局評的,而且都是全國通用的。高級工程師系列是中國專業技術職稱工程類中的高級職稱(職稱改革後稱為專業技術職務任職資格)
2. 演算法工程師大致是做什麼的
各個行業都有演算法部分,統計有統計的演算法,控制有控制的演算法,圖像處理有圖像處理的演算法。在很多傳統行業,演算法不是一個獨立的崗位,而是由研發工程師負責。今天小編就帶大家來了解下演算法工程師大致是做什麼的?我們接著往下看。
1. 圖像處理,尤其是基於OpenCV的圖像處理演算法,一般產品里有做美顏,濾鏡什麼的特別喜歡招這塊的小朋友,近一兩年有被做深度學習的取代的趨勢。最近google出了arcore,所以讓不少小公司也能出一些效果很好的換頭類應用。
2. 計算機圖形學,這也算是一個大類,主要涉及到圖形渲染演算法,光追演算法,三維圖像重構等圖像繪制方面的內容。這個方向,不光是做3d引擎和游戲開發方面,對於很多行業需要與cad相關的,都會涉及到這一個領域的模型和優化演算法設計。
3. VR,AR領域,涉及到的包括視頻跟蹤,SLAM,raytracing,幾何投影等等,實際上是一個綜合的領域,目前主要是做計算機視覺的轉行做這塊。
4. 醫學影像處理,三維圖像重構,用在B超,CT成像上,這個是醫療方向的。
5. 通信基帶信號處理,網路優化演算法,這一塊其實很式微了,畢竟高大上的演算法小公司沒成本去實施。
6. 音頻濾波,用在HiFi產品,比如車載音響,手機廠商,圈子其實蠻小的。
7. 控制演算法,自適應濾波演算法,用在機械領域上,比如機械臂行程式控制制,穩定性。
8. 有限元演算法,這塊從雷達,機械,電磁學,到服裝設計,都有很有價值的應用。
9. 信號處理,比如插值,頻譜分析,盲信號分離,壓縮感知,物聯網大部分應用會涉及這一塊。
互聯網和軟體行業把演算法分離成一個獨立的崗位大體有兩個原因。第一,低級的軟體工程師不懂演算法,或者更乾脆一點說不懂數學,所有涉及到模型和計算公式的工作都必須要找專業人員來搞定。第二,從生產效率考慮,初級演算法工程師很多沒有很好的軟體工程背景,簡單點說就是不會寫代碼只會寫matlab,這種工程師的工作交付沒有辦法直接投入生產,所以需要將他們的工作和生產環節隔離開。綜上所述,就是小編今天給大家分享的內容,希望可以幫助到大家。
3. 演算法工程師(Python語言)是什麼職位
Python工程師與人工智慧工程師的區別是什麼?一是Python工程師主要是從事編程,只能算是程序員;人工智慧工程師主要是從事演算法研究,也稱作是演算法工程師。兩者有本質的區別。二是Python工程師開發編程就像走業務流程一樣,很多東西都是現有的,你只需要一步一步的去敲代碼,去熟悉它,並不會創造出一些新的東西;人工智慧演算法工程師比Python工程師更需要有良好的數學基礎,因為在人工智慧演算法研究中會運用到許多數學知識,還要學會如何靈活運用各種框架和優化神經網路,需要你去研發它,創造出新的東西。
4. 演算法工程師工作期間需要掌握什麼知識學到哪些核心技術
演算法工程師的主要核心技術基於數學,並輔以語言。要全面掌握的知識包括高級數學,復變函數,線性代數的離散數學,數據結構以及數據挖掘所需的概率論和數學統計知識。不要太受約束去平時閱讀教科書並多練習,並培養良好的思維能力。只有那些有想法的人才能擁有技術的未來。嘗試實現您遇到的任何演算法,無論演算法的優劣總是有其自身的特徵。此外,您必須具有一定的英語水平(至少6級),因為該領域的大多數官方材料都是外語。
計算機及相關專業本科以上學歷,在互聯網搜索,推薦,流量或相關領域有2年以上工作經驗。熟悉機器學習/自然語言處理/數據挖掘/深度學習中至少一項的原理和演算法,並且能夠熟練地建模和解決業務問題。精通linux平台下的C / C ++ / Java語言開發,精通使用gcc / gdb等開發工具,並精通Python / Linux Shell / SQL等腳本開發。熟悉hadoop / hbase / storm等分布式計算技術,並熟悉其運行機制和體系結構。具有出色的分析和解決問題的能力,思路清晰,並對工作挑戰充滿熱情。具有強烈的工作責任感和團隊合作精神,並能夠交流和更好地學習。
5. 演算法工程師是個什麼崗位
演算法工程師是企業內部負責演算法這一塊的工程師,包括演算法設計,演算法優化
6. 演算法工程師的就業前景如何
人工智慧工作最受歡迎。演算法工程師平均招聘工資建議達到25978元。由於人才匱乏,企業競爭激烈,平均加薪超過7%。該市90%以上的人工智慧高薪工作都在天河區.近日,由廣州天河人才港和BOSS直接就業研究院聯合發布的《廣州市天河區2018年1-4月人才趨勢報告》,展示了該地區的主流發展趨勢:IAB已經成為天河區,和天河區創新型企業和大型企業布局或發展的核心主方向,企業以高薪吸引更多的行業優秀人才。「天河區企業渴望以高薪攫取IAB人才,這意味著企業要在這些行業中發揮實力。
7. 你覺得演算法工程師的就業前景如何
隨著大數據和人工智慧領域的不斷深入發展,自然語言處理、機器學習等方向成為求職的大熱門,演算法工程師也自然而然成為目前最炙手可熱的崗位。雖然演算法工程師一直被頻頻提及,但是許多人對這個崗位的了解還知之甚少。那麼演算法工程師究竟是做什麼的?發展前景怎麼樣呢?
由於演算法工程師對於知識結構的要求比較豐富,同時演算法工程師崗位主要以研發為主,需要從業者具備一定的創新能力,所以要想從事演算法工程師崗位往往需要讀一下研究生,目前不少大型科技企業對於演算法工程師的相關崗位也有一定的學歷要求。
8. 都快2021年了,演算法崗位應該怎樣准備面試
說到演算法崗位,現在網上的第一反應可能就是內卷,演算法崗位也號稱是內卷最嚴重的崗位。針對這個問題,其實之前我也有寫過相關的文章。這個崗位競爭激烈不假,但我個人覺得稱作內卷有些過了。就我個人的感覺,這幾年的一個大趨勢是從迷茫走向清晰。
早在2015年我在阿里媽媽實習的時候,那個時候我覺得其實對於演算法工程師這個崗位的招聘要求甚至包括工作內容其實業內是沒有一個統一的標準的。可以認為包括各大公司其實對這個崗位具體的工作內容以及需要的候選人的能力要求都不太一致,不同的面試官有不同的風格,也有不同的標准。
我舉幾個例子,第一個例子是我當初實習面試的時候,因為是本科生,的確對機器學習這個領域了解非常非常少,可以說是幾乎沒有。但是我依然通過了,通過的原因也很簡單,因為有acm的獲獎背景,面試的過程當中主要也都是一些演算法題,都還算是答得不錯。但是在交叉面試的時候,一位另一個部門的總監就問我有沒有這塊的經驗?我很明確地說了,沒有,但是我願意學。
接著他告訴我,演算法工程師的工作內容主要和機器學習相關,因此機器學習是基本的。當時我就覺得我涼了,然而很意外地是還是通過了面試。
核心能力
由於我已經很久沒有接觸校招了,所以也很難說校招面試應該怎麼樣准備,只能說說如果是我來招聘,我會喜歡什麼樣的學生。也可以理解成我理解的一個合格優秀的演算法工程師應該有的能力。
模型理解
演算法工程師和模型打交道,那麼理解模型是必須的。其實不用說每一個模型都精通,這沒有必要,面試的時候問的模型也不一定用得到。但更多地是看重這個人在學習的時候的習慣,他是淺嘗輒止呢,還是會刨根究底,究竟能夠學到怎樣的地步。
在實際的工作當中我們可能會面臨各種各樣的情況,比如說新加了特徵但是沒有效果,比如升級了模型效果反而變差了等等,這些情況都是有可能發生的。當我們遇到這些情況之後,需要我們根據已知的信息來推理和猜測導致的原因從而針對性的採取相應的手段。因此這就需要我們對當前的模型有比較深入地了解,否則推導原因做出改進也就無從談起。
所以面試的時候問起哪個模型都不重要,重要的是你能不能體現出你有過深入的研究和理解。
數據分析
演算法工程師一直和數據打交道,那麼分析數據、清洗數據、做數據的能力也必不可少。說起來簡單的數據分析,這當中其實牽扯很多,簡單來說至少有兩個關鍵點。
第一個關鍵點是處理數據的能力,比如SQL、hive、spark、MapRece這些常用的數據處理的工具會不會,會多少?是一個都不會呢,還是至少會一點。由於各個公司的技術棧不同,一般不會抱著候選人必須剛好會和我們一樣的期待去招人,但是候選人如果一無所知肯定也是不行的。由於學生時代其實很少接觸這種實踐的內容,很多人對這些都一無所知,如果你會一兩個,其實就是加分項。
第二個關鍵點是對數據的理解力,舉個簡單的例子,比如說現在的樣本訓練了模型之後效果不好,我們要分析它的原因,你該怎麼下手?這個問題日常當中經常遇到,也非常考驗演算法工程師對數據的分析能力以及他的經驗。數據是水,模型是船,我們要把船駛向遠方,只懂船隻構造是不行的,還需要對水文、天象也有了解。這樣才能從數據當中捕捉到trick,對一些現象有更深入的看法和理解。
工程能力
雖然是演算法工程師,但是並不代表工程能力不重要,相反工程能力也很重要。當然這往往不會成為招聘的硬性指標, 比如考察你之前做過什麼工程項目之類的。但是會在你的代碼測試環節有所體現,你的代碼風格,你的編碼能力都是你面試的考察點之一。
並不只是在面試當中如此,在實際工作當中,工程能力也很關鍵。往小了說可以開發一些工具、腳本方便自己或者是團隊當中其他人的日常工作,往大了說,你也可以成為團隊當中的開發擔當,負責其團隊當中最工程的工作。比如說復現一篇paper,或者是從頭擼一個模型。這其實也是一種差異化競爭的手段,你合理地負擔起別人負擔不了的工作,那麼自然就會成為你的業績。
時代在變化,行業在發展,如今的校招會問些什麼早已經和當年不同了。但不管怎麼說,這個崗位以及面試官對於人才的核心訴求幾乎是沒有變過的,我們從核心出發去構建簡歷、准備面試,相信一定可以有所收獲。
9. 數據演算法工程師是什麼職位
演算法工程師通過算式來完成不同的邏輯運算,他們的工作范圍有對圖像音頻視頻等信息進行處理,如圖像和視頻的分類、檢測、識別、跟蹤、計算成像等,通過大數據分析進行廣告等內容的推薦,通過演算法實現導航定位及機器的自動化,發送信號通訊方面也不能缺少演算法工程師,可以說演算法工程師幾乎占據了互聯網的每一個領域。
10. 演算法工程師是計算什麼的
看行業
圖像演算法:
崗位職責 1、負責模式識別等相關演算法的研究,設計,實現和優化; 2、深入了解深度學習、機器學習,了解TensorFlow MxNet Caffe等主流深度學習框架,能快速驗證演算法模型; 3、深入了解CNN,RCNN,FastRCNN,VGG,LeNet,ResNet等主流神經網路模型,並能進行根據需求進行相應的優化,有效提高演算法的效率和精度; 4、深入了解物體識別、人臉識別、人體姿態識別、手勢識別等相關演算法,針對相關領域演算法進行研究、驗證、實現與優化; 5、針對不同的系統和硬體平台,對各類演算法進行移植和優化。
金融:
職位描述:
1.有扎實的演算法理論功底,有NLP,圖像識別,分類,檢測方面,視頻等相關項目經驗優先等; 2.熟悉常用深度學習編程語言; 3.熟悉深度學習的框架TensorFlow,caffe,pytorch了解YOLOSSDFASTERRCNN等目標檢測演算法,熟悉Resnetinceptionvgg16mobilenet等深度學習網路,熟悉網路的調參及模型訓練方式優先; 4.熟悉linux平台及Android平台,有深度學習模型移植手機端實際經驗的優先; 5.具有優秀的分析和解決問題能力,快速學習新知識能力,具有團隊合作精神