當前位置:首頁 » 操作系統 » 遺傳演算法matlab源代碼

遺傳演算法matlab源代碼

發布時間: 2022-07-14 00:16:36

① 遺傳演算法的matlab代碼實現是什麼

遺傳演算法我懂,我的論文就是用著這個演算法,具體到你要遺傳演算法是做什麼?優化什麼的。。。我給你一個標准遺傳演算法程序供你參考:
該程序是遺傳演算法優化BP神經網路函數極值尋優:
%% 該代碼為基於神經網路遺傳演算法的系統極值尋優
%% 清空環境變數
clc
clear

%% 初始化遺傳演算法參數
%初始化參數
maxgen=100; %進化代數,即迭代次數
sizepop=20; %種群規模
pcross=[0.4]; %交叉概率選擇,0和1之間
pmutation=[0.2]; %變異概率選擇,0和1之間

lenchrom=[1 1]; %每個變數的字串長度,如果是浮點變數,則長度都為1
bound=[-5 5;-5 5]; %數據范圍

indivials=struct('fitness',zeros(1,sizepop), 'chrom',[]); %將種群信息定義為一個結構體
avgfitness=[]; %每一代種群的平均適應度
bestfitness=[]; %每一代種群的最佳適應度
bestchrom=[]; %適應度最好的染色體

%% 初始化種群計算適應度值
% 初始化種群
for i=1:sizepop
%隨機產生一個種群
indivials.chrom(i,:)=Code(lenchrom,bound);
x=indivials.chrom(i,:);
%計算適應度
indivials.fitness(i)=fun(x); %染色體的適應度
end
%找最好的染色體
[bestfitness bestindex]=min(indivials.fitness);
bestchrom=indivials.chrom(bestindex,:); %最好的染色體
avgfitness=sum(indivials.fitness)/sizepop; %染色體的平均適應度
% 記錄每一代進化中最好的適應度和平均適應度
trace=[avgfitness bestfitness];

%% 迭代尋優
% 進化開始
for i=1:maxgen
i
% 選擇
indivials=Select(indivials,sizepop);
avgfitness=sum(indivials.fitness)/sizepop;
%交叉
indivials.chrom=Cross(pcross,lenchrom,indivials.chrom,sizepop,bound);
% 變異
indivials.chrom=Mutation(pmutation,lenchrom,indivials.chrom,sizepop,[i maxgen],bound);

% 計算適應度
for j=1:sizepop
x=indivials.chrom(j,:); %解碼
indivials.fitness(j)=fun(x);
end

%找到最小和最大適應度的染色體及它們在種群中的位置
[newbestfitness,newbestindex]=min(indivials.fitness);
[worestfitness,worestindex]=max(indivials.fitness);
% 代替上一次進化中最好的染色體
if bestfitness>newbestfitness
bestfitness=newbestfitness;
bestchrom=indivials.chrom(newbestindex,:);
end
indivials.chrom(worestindex,:)=bestchrom;
indivials.fitness(worestindex)=bestfitness;

avgfitness=sum(indivials.fitness)/sizepop;

trace=[trace;avgfitness bestfitness]; %記錄每一代進化中最好的適應度和平均適應度
end
%進化結束

%% 結果分析
[r c]=size(trace);
plot([1:r]',trace(:,2),'r-');
title('適應度曲線','fontsize',12);
xlabel('進化代數','fontsize',12);ylabel('適應度','fontsize',12);
axis([0,100,0,1])
disp('適應度 變數');
x=bestchrom;
% 窗口顯示
disp([bestfitness x]);

② NSGA2遺傳演算法在matlab具體使用方法,有源代碼該如何修改程序中的參數及設置

遺傳演算法在matlab里有兩個函數,分別是ga和gaoptimset,前者用來調用遺傳演算法,後者用來設定遺傳演算法的參數,具體內容可以doc ga查看,遺傳演算法有哪些參數可以直接在命令窗口輸入gaoptimset查看,祝好。

③ 在matlab中如何用遺傳演算法求極值

matlab有遺傳演算法工具箱。

核心函數:
(1)function [pop]=initializega(num,bounds,eevalFN,eevalOps,options)--初始種群的生成函數
【輸出參數】
pop--生成的初始種群
【輸入參數】
num--種群中的個體數目
bounds--代表變數的上下界的矩陣
eevalFN--適應度函數
eevalOps--傳遞給適應度函數的參數
options--選擇編碼形式(浮點編碼或是二進制編碼)[precision F_or_B],如
precision--變數進行二進制編碼時指定的精度
F_or_B--為1時選擇浮點編碼,否則為二進制編碼,由precision指定精度)

(2)function [x,endPop,bPop,traceInfo] = ga(bounds,evalFN,evalOps,startPop,opts,...
termFN,termOps,selectFN,selectOps,xOverFNs,xOverOps,mutFNs,mutOps)--遺傳演算法函數
【輸出參數】
x--求得的最優解
endPop--最終得到的種群
bPop--最優種群的一個搜索軌跡
【輸入參數】
bounds--代表變數上下界的矩陣
evalFN--適應度函數
evalOps--傳遞給適應度函數的參數
startPop-初始種群
opts[epsilon prob_ops display]--opts(1:2)等同於initializega的options參數,第三個參數控制是否輸出,一般為0。如[1e-6 1 0]
termFN--終止函數的名稱,如['maxGenTerm']
termOps--傳遞個終止函數的參數,如[100]
selectFN--選擇函數的名稱,如['normGeomSelect']
selectOps--傳遞個選擇函數的參數,如[0.08]
xOverFNs--交叉函數名稱表,以空格分開,如['arithXover heuristicXover simpleXover']
xOverOps--傳遞給交叉函數的參數表,如[2 0;2 3;2 0]
mutFNs--變異函數表,如['boundaryMutation multiNonUnifMutation nonUnifMutation unifMutation']
mutOps--傳遞給交叉函數的參數表,如[4 0 0;6 100 3;4 100 3;4 0 0]

注意】matlab工具箱函數必須放在工作目錄下
【問題】求f(x)=x+10*sin(5x)+7*cos(4x)的最大值,其中0<=x<=9
【分析】選擇二進制編碼,種群中的個體數目為10,二進制編碼長度為20,交叉概率為0.95,變異概率為0.08
【程序清單】
%編寫目標函數
function[sol,eval]=fitness(sol,options)
x=sol(1);
eval=x+10*sin(5*x)+7*cos(4*x);
%把上述函數存儲為fitness.m文件並放在工作目錄下

initPop=initializega(10,[0 9],'fitness');%生成初始種群,大小為10
[x endPop,bPop,trace]=ga([0 9],'fitness',[],initPop,[1e-6 1 1],'maxGenTerm',25,'normGeomSelect',...
[0.08],['arithXover'],[2],'nonUnifMutation',[2 25 3]) %25次遺傳迭代

運算借過為:x =
7.8562 24.8553(當x為7.8562時,f(x)取最大值24.8553)

註:遺傳演算法一般用來取得近似最優解,而不是最優解。

遺傳演算法實例2

【問題】在-5<=Xi<=5,i=1,2區間內,求解
f(x1,x2)=-20*exp(-0.2*sqrt(0.5*(x1.^2+x2.^2)))-exp(0.5*(cos(2*pi*x1)+cos(2*pi*x2)))+22.71282的最小值。
【分析】種群大小10,最大代數1000,變異率0.1,交叉率0.3
【程序清單】
%源函數的matlab代碼
function [eval]=f(sol)
numv=size(sol,2);
x=sol(1:numv);
eval=-20*exp(-0.2*sqrt(sum(x.^2)/numv)))-exp(sum(cos(2*pi*x))/numv)+22.71282;
%適應度函數的matlab代碼
function [sol,eval]=fitness(sol,options)
numv=size(sol,2)-1;
x=sol(1:numv);
eval=f(x);
eval=-eval;
%遺傳演算法的matlab代碼
bounds=ones(2,1)*[-5 5];
[p,endPop,bestSols,trace]=ga(bounds,'fitness')

註:前兩個文件存儲為m文件並放在工作目錄下,運行結果為
p =
0.0000 -0.0000 0.0055

大家可以直接繪出f(x)的圖形來大概看看f(x)的最值是多少,也可是使用優化函數來驗證。matlab命令行執行命令:
fplot('x+10*sin(5*x)+7*cos(4*x)',[0,9])

evalops是傳遞給適應度函數的參數,opts是二進制編碼的精度,termops是選擇maxGenTerm結束函數時傳遞個maxGenTerm的參數,即遺傳代數。xoverops是傳遞給交叉函數的參數。mutops是傳遞給變異函數的參數。

④ 大家好,請問誰有基於matlab的遺傳演算法源代碼,很需要呀

function [Zp,Y1p,Y2p,Y3p,Xp,LC1,LC2]=JSPGA(M,N,Pm,T,P)
%--------------------------------------------------------------------------
% JSPGA.m
% 車間作業調度問題遺傳演算法
%--------------------------------------------------------------------------
% 輸入參數列表
% M 遺傳進化迭代次數
% N 種群規模(取偶數)
% Pm 變異概率
% T m×n的矩陣,存儲m個工件n個工序的加工時間
% P 1×n的向量,n個工序中,每一個工序所具有的機床數目
% 輸出參數列表
% Zp 最優的Makespan值
% Y1p 最優方案中,各工件各工序的開始時刻,可根據它繪出甘特圖
% Y2p 最優方案中,各工件各工序的結束時刻,可根據它繪出甘特圖
% Y3p 最優方案中,各工件各工序使用的機器編號
% Xp 最優決策變數的值,決策變數是一個實數編碼的m×n矩陣
% LC1 收斂曲線1,各代最優個體適應值的記錄
% LC2 收斂曲線2,各代群體平均適應值的記錄
% 最後,程序還將繪出三副圖片:兩條收斂曲線圖和甘特圖(各工件的調度時序圖)

%第一步:變數初始化
[m,n]=size(T);%m是總工件數,n是總工序數
Xp=zeros(m,n);%最優決策變數
LC1=zeros(1,M);%收斂曲線1
LC2=zeros(1,N);%收斂曲線2

%第二步:隨機產生初始種群
farm=cell(1,N);%採用細胞結構存儲種群
for k=1:N
X=zeros(m,n);
for j=1:n
for i=1:m
X(i,j)=1+(P(j)-eps)*rand;
end
end
farm=X;
end

counter=0;%設置迭代計數器
while counter

%第三步:交叉
newfarm=cell(1,N);%交叉產生的新種群存在其中
Ser=randperm(N);
for i=1:2:(N-1)
A=farm;%父代個體
B=farm;
Manner=unidrnd(2);%隨機選擇交叉方式
if Manner==1
cp=unidrnd(m-1);%隨機選擇交叉點
%雙親雙子單點交叉
a=[A(1:cp,:);B((cp+1):m,:)];%子代個體
b=[B(1:cp,:);A((cp+1):m,:)];
else
cp=unidrnd(n-1);%隨機選擇交叉點
a=[A(:,1:cp),B(:,(cp+1):n)];%雙親雙子單點交叉
b=[B(:,1:cp),A(:,(cp+1):n)];
end
newfarm=a;%交叉後的子代存入newfarm
newfarm=b;
end
%新舊種群合並
FARM=[farm,newfarm];

%第四步:選擇復制
FITNESS=zeros(1,2*N);
fitness=zeros(1,N);
plotif=0;
for i=1:(2*N)
X=FARM;
Z=COST(X,T,P,plotif);%調用計算費用的子函數
FITNESS(i)=Z;
end
%選擇復制採取兩兩隨機配對競爭的方式,具有保留最優個體的能力
Ser=randperm(2*N);
for i=1:N
f1=FITNESS(Ser(2*i-1));
f2=FITNESS(Ser(2*i));
if f1<=f2
farm=FARM;
fitness(i)=FITNESS(Ser(2*i-1));
else
farm=FARM;
fitness(i)=FITNESS(Ser(2*i));
end
end
%記錄最佳個體和收斂曲線
minfitness=min(fitness)
meanfitness=mean(fitness)
LC1(counter+1)=minfitness;%收斂曲線1,各代最優個體適應值的記錄
LC2(counter+1)=meanfitness;%收斂曲線2,各代群體平均適應值的記錄
pos=find(fitness==minfitness);
Xp=farm;

%第五步:變異
for i=1:N
if Pm>rand;%變異概率為Pm
X=farm;
I=unidrnd(m);
J=unidrnd(n);
X(I,J)=1+(P(J)-eps)*rand;
farm=X;
end
end
farm=Xp;

counter=counter+1
end

%輸出結果並繪圖
figure(1);
plotif=1;
X=Xp;
[Zp,Y1p,Y2p,Y3p]=COST(X,T,P,plotif);
figure(2);
plot(LC1);
figure(3);
plot(LC2);

⑤ MATLAB編遺傳演算法源程序

遺傳演算法實例:

也是自己找來的,原代碼有少許錯誤,本人都已更正了,調試運行都通過了的。
對於初學者,尤其是還沒有編程經驗的非常有用的一個文件
遺傳演算法實例

% 下面舉例說明遺傳演算法 %
% 求下列函數的最大值 %
% f(x)=10*sin(5x)+7*cos(4x) x∈[0,10] %
% 將 x 的值用一個10位的二值形式表示為二值問題,一個10位的二值數提供的解析度是每為 (10-0)/(2^10-1)≈0.01 。 %
% 將變數域 [0,10] 離散化為二值域 [0,1023], x=0+10*b/1023, 其中 b 是 [0,1023] 中的一個二值數。 %
% %
%--------------------------------------------------------------------------------------------------------------%
%--------------------------------------------------------------------------------------------------------------%

% 編程
%-----------------------------------------------
% 2.1初始化(編碼)
% initpop.m函數的功能是實現群體的初始化,popsize表示群體的大小,chromlength表示染色體的長度(二值數的長度),
% 長度大小取決於變數的二進制編碼的長度(在本例中取10位)。
%遺傳演算法子程序
%Name: initpop.m
%初始化
function pop=initpop(popsize,chromlength)
pop=round(rand(popsize,chromlength)); % rand隨機產生每個單元為 {0,1} 行數為popsize,列數為chromlength的矩陣,
% roud對矩陣的每個單元進行圓整。這樣產生的初始種群。

% 2.2 計算目標函數值
% 2.2.1 將二進制數轉化為十進制數(1)
%遺傳演算法子程序
%Name: decodebinary.m
%產生 [2^n 2^(n-1) ... 1] 的行向量,然後求和,將二進制轉化為十進制
function pop2=decodebinary(pop)
[px,py]=size(pop); %求pop行和列數
for i=1:py
pop1(:,i)=2.^(py-i).*pop(:,i);
end
pop2=sum(pop1,2); %求pop1的每行之和

% 2.2.2 將二進制編碼轉化為十進制數(2)
% decodechrom.m函數的功能是將染色體(或二進制編碼)轉換為十進制,參數spoint表示待解碼的二進制串的起始位置
% (對於多個變數而言,如有兩個變數,採用20為表示,每個變數10為,則第一個變數從1開始,另一個變數從11開始。本例為1),
% 參數1ength表示所截取的長度(本例為10)。
%遺傳演算法子程序
%Name: decodechrom.m
%將二進制編碼轉換成十進制
function pop2=decodechrom(pop,spoint,length)
pop1=pop(:,spoint:spoint+length-1);
pop2=decodebinary(pop1);

% 2.2.3 計算目標函數值
% calobjvalue.m函數的功能是實現目標函數的計算,其公式採用本文示例模擬,可根據不同優化問題予以修改。
%遺傳演算法子程序
%Name: calobjvalue.m
%實現目標函數的計算
function [objvalue]=calobjvalue(pop)
temp1=decodechrom(pop,1,10); %將pop每行轉化成十進制數
x=temp1*10/1023; %將二值域 中的數轉化為變數域 的數
objvalue=10*sin(5*x)+7*cos(4*x); %計算目標函數值

% 2.3 計算個體的適應值
%遺傳演算法子程序
%Name:calfitvalue.m
%計算個體的適應值
function fitvalue=calfitvalue(objvalue)
global Cmin;
Cmin=0;
[px,py]=size(objvalue);
for i=1:px
if objvalue(i)+Cmin>0
temp=Cmin+objvalue(i);
else
temp=0.0;
end
fitvalue(i)=temp;
end
fitvalue=fitvalue';

% 2.4 選擇復制
% 選擇或復制操作是決定哪些個體可以進入下一代。程序中採用賭輪盤選擇法選擇,這種方法較易實現。
% 根據方程 pi=fi/∑fi=fi/fsum ,選擇步驟:
% 1) 在第 t 代,由(1)式計算 fsum 和 pi
% 2) 產生 {0,1} 的隨機數 rand( .),求 s=rand( .)*fsum
% 3) 求 ∑fi≥s 中最小的 k ,則第 k 個個體被選中
% 4) 進行 N 次2)、3)操作,得到 N 個個體,成為第 t=t+1 代種群
%遺傳演算法子程序
%Name: selection.m
%選擇復制
function [newpop]=selection(pop,fitvalue)
totalfit=sum(fitvalue); %求適應值之和
fitvalue=fitvalue/totalfit; %單個個體被選擇的概率
fitvalue=cumsum(fitvalue); %如 fitvalue=[1 2 3 4],則 cumsum(fitvalue)=[1 3 6 10]
[px,py]=size(pop);
ms=sort(rand(px,1)); %從小到大排列
fitin=1;
newin=1;
while newin<=px
if(ms(newin))<fitvalue(fitin)
newpop(newin)=pop(fitin);
newin=newin+1;
else
fitin=fitin+1;
end
end

% 2.5 交叉
% 交叉(crossover),群體中的每個個體之間都以一定的概率 pc 交叉,即兩個個體從各自字元串的某一位置
% (一般是隨機確定)開始互相交換,這類似生物進化過程中的基因分裂與重組。例如,假設2個父代個體x1,x2為:
% x1=0100110
% x2=1010001
% 從每個個體的第3位開始交叉,交又後得到2個新的子代個體y1,y2分別為:
% y1=0100001
% y2=1010110
% 這樣2個子代個體就分別具有了2個父代個體的某些特徵。利用交又我們有可能由父代個體在子代組合成具有更高適合度的個體。
% 事實上交又是遺傳演算法區別於其它傳統優化方法的主要特點之一。
%遺傳演算法子程序
%Name: crossover.m
%交叉
function [newpop]=crossover(pop,pc)
[px,py]=size(pop);
newpop=ones(size(pop));
for i=1:2:px-1
if(rand<pc)
cpoint=round(rand*py);
newpop(i,:)=[pop(i,1:cpoint),pop(i+1,cpoint+1:py)];
newpop(i+1,:)=[pop(i+1,1:cpoint),pop(i,cpoint+1:py)];
else
newpop(i,:)=pop(i);
newpop(i+1,:)=pop(i+1);
end
end

% 2.6 變異
% 變異(mutation),基因的突變普遍存在於生物的進化過程中。變異是指父代中的每個個體的每一位都以概率 pm 翻轉,即由「1」變為「0」,
% 或由「0」變為「1」。遺傳演算法的變異特性可以使求解過程隨機地搜索到解可能存在的整個空間,因此可以在一定程度上求得全局最優解。
%遺傳演算法子程序
%Name: mutation.m
%變異
function [newpop]=mutation(pop,pm)
[px,py]=size(pop);
newpop=ones(size(pop));
for i=1:px
if(rand<pm)
mpoint=round(rand*py);
if mpoint<=0
mpoint=1;
end
newpop(i)=pop(i);
if any(newpop(i,mpoint))==0
newpop(i,mpoint)=1;
else
newpop(i,mpoint)=0;
end
else
newpop(i)=pop(i);
end
end

% 2.7 求出群體中最大得適應值及其個體
%遺傳演算法子程序
%Name: best.m
%求出群體中適應值最大的值
function [bestindivial,bestfit]=best(pop,fitvalue)
[px,py]=size(pop);
bestindivial=pop(1,:);
bestfit=fitvalue(1);
for i=2:px
if fitvalue(i)>bestfit
bestindivial=pop(i,:);
bestfit=fitvalue(i);
end
end

% 2.8 主程序
%遺傳演算法主程序
%Name:genmain05.m
clear
clf
popsize=20; %群體大小
chromlength=10; %字元串長度(個體長度)
pc=0.6; %交叉概率
pm=0.001; %變異概率

pop=initpop(popsize,chromlength); %隨機產生初始群體
for i=1:20 %20為迭代次數
[objvalue]=calobjvalue(pop); %計算目標函數
fitvalue=calfitvalue(objvalue); %計算群體中每個個體的適應度
[newpop]=selection(pop,fitvalue); %復制
[newpop]=crossover(pop,pc); %交叉
[newpop]=mutation(pop,pc); %變異
[bestindivial,bestfit]=best(pop,fitvalue); %求出群體中適應值最大的個體及其適應值
y(i)=max(bestfit);
n(i)=i;
pop5=bestindivial;
x(i)=decodechrom(pop5,1,chromlength)*10/1023;
pop=newpop;
end

fplot('10*sin(5*x)+7*cos(4*x)',[0 10])
hold on
plot(x,y,'r*')
hold off

[z index]=max(y); %計算最大值及其位置
x5=x(index)%計算最大值對應的x值
y=z

【問題】求f(x)=x 10*sin(5x) 7*cos(4x)的最大值,其中0<=x<=9
【分析】選擇二進制編碼,種群中的個體數目為10,二進制編碼長度為20,交叉概率為0.95,變異概率為0.08
【程序清單】
%編寫目標函數
function[sol,eval]=fitness(sol,options)
x=sol(1);
eval=x 10*sin(5*x) 7*cos(4*x);
%把上述函數存儲為fitness.m文件並放在工作目錄下
initPop=initializega(10,[0 9],'fitness');%生成初始種群,大小為10
[x endPop,bPop,trace]=ga([0 9],'fitness',[],initPop,[1e-6 1 1],'maxGenTerm',25,'normGeomSelect',...
[0.08],['arithXover'],[2],'nonUnifMutation',[2 25 3]) %25次遺傳迭代
運算借過為:x =
7.8562 24.8553(當x為7.8562時,f(x)取最大值24.8553)
註:遺傳演算法一般用來取得近似最優解,而不是最優解。
遺傳演算法實例2
【問題】在-5<=Xi<=5,i=1,2區間內,求解
f(x1,x2)=-20*exp(-0.2*sqrt(0.5*(x1.^2 x2.^2)))-exp(0.5*(cos(2*pi*x1) cos(2*pi*x2))) 22.71282的最小值。
【分析】種群大小10,最大代數1000,變異率0.1,交叉率0.3
【程序清單】
%源函數的matlab代碼
function [eval]=f(sol)
numv=size(sol,2);
x=sol(1:numv);
eval=-20*exp(-0.2*sqrt(sum(x.^2)/numv)))-exp(sum(cos(2*pi*x))/numv) 22.71282;
%適應度函數的matlab代碼
function [sol,eval]=fitness(sol,options)
numv=size(sol,2)-1;
x=sol(1:numv);
eval=f(x);
eval=-eval;
%遺傳演算法的matlab代碼
bounds=ones(2,1)*[-5 5];
[p,endPop,bestSols,trace]=ga(bounds,'fitness')
註:前兩個文件存儲為m文件並放在工作目錄下,運行結果為
p =
0.0000 -0.0000 0.0055
大家可以直接繪出f(x)的圖形來大概看看f(x)的最值是多少,也可是使用優化函數來驗證。matlab命令行執行命令:
fplot('x 10*sin(5*x) 7*cos(4*x)',[0,9])
evalops是傳遞給適應度函數的參數,opts是二進制編碼的精度,termops是選擇maxGenTerm結束函數時傳遞個maxGenTerm的參數,即遺傳代數。xoverops是傳遞給交叉函數的參數。mutops是傳遞給變異函數的參數。

【問題】求f(x)=x+10*sin(5x)+7*cos(4x)的最大值,其中0<=x<=9
【分析】選擇二進制編碼,種群中的個體數目為10,二進制編碼長度為20,交叉概率為0.95,變異概率為0.08
【程序清單】
%編寫目標函數
function[sol,eval]=fitness(sol,options)
x=sol(1);
eval=x+10*sin(5*x)+7*cos(4*x);
%把上述函數存儲為fitness.m文件並放在工作目錄下
initPop=initializega(10,[0 9],'fitness');%生成初始種群,大小為10
[x endPop,bPop,trace]=ga([0 9],'fitness',[],initPop,[1e-6 1 1],'maxGenTerm',25,'normGeomSelect',...
[0.08],['arithXover'],[2],'nonUnifMutation',[2 25 3]) %25次遺傳迭代
運算借過為:x =
7.8562 24.8553(當x為7.8562時,f(x)取最大值24.8553)
註:遺傳演算法一般用來取得近似最優解,而不是最優解。
遺傳演算法實例2
【問題】在-5<=Xi<=5,i=1,2區間內,求解
f(x1,x2)=-20*exp(-0.2*sqrt(0.5*(x1.^2+x2.^2)))-exp(0.5*(cos(2*pi*x1)+cos(2*pi*x2)))+22.71282的最小值。
【分析】種群大小10,最大代數1000,變異率0.1,交叉率0.3
【程序清單】
%源函數的matlab代碼
function [eval]=f(sol)
numv=size(sol,2);
x=sol(1:numv);
eval=-20*exp(-0.2*sqrt(sum(x.^2)/numv)))-exp(sum(cos(2*pi*x))/numv)+22.71282;
%適應度函數的matlab代碼
function [sol,eval]=fitness(sol,options)
numv=size(sol,2)-1;
x=sol(1:numv);
eval=f(x);
eval=-eval;
%遺傳演算法的matlab代碼
bounds=ones(2,1)*[-5 5];
[p,endPop,bestSols,trace]=ga(bounds,'fitness')
註:前兩個文件存儲為m文件並放在工作目錄下,運行結果為
p =
0.0000 -0.0000 0.0055
大家可以直接繪出f(x)的圖形來大概看看f(x)的最值是多少,也可是使用優化函數來驗證。matlab命令行執行命令:
fplot('x+10*sin(5*x)+7*cos(4*x)',[0,9])
evalops是傳遞給適應度函數的參數,opts是二進制編碼的精度,termops是選擇maxGenTerm結束函數時傳遞個maxGenTerm的參數,即遺傳代數。xoverops是傳遞給交叉函數的參數。mutops是傳遞給變異函數的參數。

⑥ 求一個基本遺傳演算法的MATLAB代碼

我發一些他們的源程序你,都是我在文獻中搜索總結出來的:
%
下面舉例說明遺傳演算法
%
%
求下列函數的最大值
%
%
f(x)=10*sin(5x)+7*cos(4x)
x∈[0,10]
%
%

x
的值用一個10位的二值形式表示為二值問題,一個10位的二值數提供的解析度是每為
(10-0)/(2^10-1)≈0.01

%
%
將變數域
[0,10]
離散化為二值域
[0,1023],
x=0+10*b/1023,
其中
b

[0,1023]
中的一個二值數。
%
%
%
%--------------------------------------------------------------------------------------------------------------%
%--------------------------------------------------------------------------------------------------------------%
%
編程
%-----------------------------------------------
%
2.1初始化(編碼)
%
initpop.m函數的功能是實現群體的初始化,popsize表示群體的大小,chromlength表示染色體的長度(二值數的長度),
%
長度大小取決於變數的二進制編碼的長度(在本例中取10位)。
%遺傳演算法子程序
%Name:
initpop.m
%初始化
function
pop=initpop(popsize,chromlength)
pop=round(rand(popsize,chromlength));
%
rand隨機產生每個單元為
{0,1}
行數為popsize,列數為chromlength的矩陣,
%
roud對矩陣的每個單元進行圓整。這樣產生的初始種群。
%
2.2.2
將二進制編碼轉化為十進制數(2)
%
decodechrom.m函數的功能是將染色體(或二進制編碼)轉換為十進制,參數spoint表示待解碼的二進制串的起始位置
%
(對於多個變數而言,如有兩個變數,採用20為表示,每個變數10為,則第一個變數從1開始,另一個變數從11開始。本例為1),
%
參數1ength表示所截取的長度(本例為10)。
%遺傳演算法子程序
%Name:
decodechrom.m
%將二進制編碼轉換成十進制
function
pop2=decodechrom(pop,spoint,length)
pop1=pop(:,spoint:spoint+length-1);
pop2=decodebinary(pop1);
%
2.4
選擇復制
%
選擇或復制操作是決定哪些個體可以進入下一代。程序中採用賭輪盤選擇法選擇,這種方法較易實現。
%
根據方程
pi=fi/∑fi=fi/fsum
,選擇步驟:
%
1)
在第
t
代,由(1)式計算
fsum

pi
%
2)
產生
{0,1}
的隨機數
rand(
.),求
s=rand(
.)*fsum
%
3)

∑fi≥s
中最小的
k
,則第
k
個個體被選中
%
4)
進行
N
次2)、3)操作,得到
N
個個體,成為第
t=t+1
代種群
%遺傳演算法子程序
%Name:
selection.m
%選擇復制
function
[newpop]=selection(pop,fitvalue)
totalfit=sum(fitvalue);
%求適應值之和
fitvalue=fitvalue/totalfit;
%單個個體被選擇的概率
fitvalue=cumsum(fitvalue);
%如
fitvalue=[1
2
3
4],則
cumsum(fitvalue)=[1
3
6
10]
[px,py]=size(pop);
ms=sort(rand(px,1));
%從小到大排列
fitin=1;
newin=1;
while
newin<=px
if(ms(newin))
評論
0
0
載入更多

⑦ 遺傳演算法優化概率神經網路的matlab代碼

原理大概是,設置一個初始種群,種群里的個體就是平滑因子,經過遺傳演算法的選擇、交叉、變異後,逐漸找到一個最佳的spread,即為最終結果。

附件是一個GA-BP演算法的程序,雖然不同,但是原理是相近的,可以參考。

遺傳演算法的基本運算過程如下:

a)初始化:設置進化代數計數器t=0,設置最大進化代數T,隨機生成M個個體作為初始群體P(0)。

b)個體評價:計算群體P(t)中各個個體的適應度。

c)選擇運算:將選擇運算元作用於群體。選擇的目的是把優化的個體直接遺傳到下一代或通過配對交叉產生新的個體再遺傳到下一代。選擇操作是建立在群體中個體的適應度評估基礎上的。

d)交叉運算:將交叉運算元作用於群體。遺傳演算法中起核心作用的就是交叉運算元。

e)變異運算:將變異運算元作用於群體。即是對群體中的個體串的某些基因座上的基因值作變動。

群體P(t)經過選擇、交叉、變異運算之後得到下一代群體P(t+1)。

f)終止條件判斷:若t=T,則以進化過程中所得到的具有最大適應度個體作為最優解輸出,終止計算。

⑧ 請問這個MATLAB遺傳演算法源代碼應該怎樣使用

在command窗口中輸入函數名字加參數值,把括弧里的參數變成具體數後在命令窗口中輸入ga(d,termops,num,pc,cxops,pm,alpha)

熱點內容
內存大小的存儲 發布:2025-01-22 18:58:17 瀏覽:393
tampermonkey腳本 發布:2025-01-22 18:53:17 瀏覽:117
windows7共享文件夾 發布:2025-01-22 18:53:17 瀏覽:478
如何調節安卓手機的內存 發布:2025-01-22 18:49:30 瀏覽:639
佳能相機存儲卡怎麼取消 發布:2025-01-22 18:40:59 瀏覽:569
天貓寶貝上傳 發布:2025-01-22 18:35:09 瀏覽:544
ipad如何登錄金鏟鏟安卓賬號 發布:2025-01-22 18:32:09 瀏覽:320
加密溝通 發布:2025-01-22 18:31:22 瀏覽:555
win7ftp用戶名和密碼設置 發布:2025-01-22 17:46:48 瀏覽:221
三表聯查的sql語句 發布:2025-01-22 17:27:13 瀏覽:418