crc32校驗演算法
『壹』 CRC32的演算法
通常的CRC演算法在計算一個數據段的CRC值時,其CRC值是由求解每個數值的CRC值的和對CRC寄存器的值反復更新而得到的。這樣,求解CRC的速度較慢。通過對CRC演算法的研究,我們發現:一個8位數據加到16位累加器中去,只有累加器的高8位或低8位與數據相作用,其結果僅有256種可能的組合值。因而,我們可以用查表法來代替反復的運算,這也同樣適用於CRC32的計算。本文所提供的程序庫中,函數crchware是一般的16位CRC的演算法;mk-crctbl用以在內存中建立一個CRC數值表;crcupdate用以查表並更新CRC累加器的值;crcrevhware和crcrevupdate是反序演算法的兩個函數;BuildCRCTable、CalculateBlockCRC32和UpdateCharac
terCRC32用於CRC32的計算。 /*CRC.C——CRC程序庫*/#defineCRCCCITT0x1021#defineCCITT-REV0x8408#defineCRC160x8005#defineCRC16-REV0xA001#defineCRC32-POLYNOMIAL0xEDB88320L/*以上為CRC除數的定義*/#defineNIL0#definecrcupdate(d,a,t)*(a)=(*(a)<<8)^(t)[(*(a)>>8)^(d)];#definecrcupdate16(d,a,t)*(a)=(*(a)>>8^(t)[(*(a)^(d))&0x00ff])/*以上兩個宏可以代替函數crcupdate和crcrevupdate*/#include<stdio.h>#include<stdlib.h>#include<alloc.h>/*函數crchware是傳統的CRC演算法,其返回值即CRC值*/unsignedshortcrchware(data,genpoly,accum)unsignedshortdata;/*輸入的數據*/unsignedshortgenpoly;/*CRC除數*/unsignedshortaccum;/*CRC累加器值*/{staticinti;data<<=8;for(i=8;i>0;i--){if((data^accum)&0x8000)accum=(accum<<1)^genpoly;elseaccum<<=1;data<<=1;}return(accum);}/*函數mk-crctbl利用函數crchware建立內存中的CRC數值表*/unsignedshort*mk-crctbl(poly,crcfn);unsignedshortpoly;/*CRC除數--CRC生成多項式*/R>unsignedshort(*crcfn)();/*指向CRC函數(例如crchware)的指針*/{/*unsignedshort*/malloc();*/unsignedshort*crctp;inti;if((crctp=(unsignedshort*)malloc(256*sizeof(unsigned)))==0)return0;for(i=0;i<256;i++)crctp=(*crcfn)(i,poly,0);returncrctp;}/*函數mk-crctbl的使用範例*/if((crctblp=mk-crctbl(CRCCCITT,crchware))==NIL){puts(insuffmemoryforCRClookuptable.n);return1;*//*函數crcupdate用以用查表法計算CRC值並更新CRC累加器值*/voidcrcupdate(data,accum,crctab)unsignedshortdata;/*輸入的數據*/unsignedshort*accum;/*指向CRC累加器的指針*/unsignedshort*crctab;/*指向內存中CRC表的指針*/{staticshortcomb-val;comb-val=(*accum>>8)^data;*accum=(*accum<<8)^crctab[comb-val];}/*函數crcrevhware是傳統的CRC演算法的反序演算法,其返回值即CRC值*/unsignedshortcrcrevhware(data,genpoly,accum)unsignedshortdata;unsignedshortgenpoly;unsignedshortaccum;{staticinti;data<<=1;for(i=8;i>0;i--){data>>=1;if((data^accum)&0x0001)accum=(accum>>1)^genpoly;elseaccum>>=1;}returnaccum;}/*函數crcrevupdate用以用反序查表法計算CRC值並更新CRC累加器值*/voidcrcrevupdate(data,accum,crcrevtab)unsignedshortdata;unsignedshort*accum;DvNews2.
crc32 — 計算一個字元串的 crc32 多項式
『貳』 求助crc32的原理
數據結構演算法:CRC32演算法實現原理
簡而言之,CRC是一個數值。該數值被用於校驗數據的正確性。CRC數值簡單地說就是通過讓你需要做處理的數據除以一個常數而得到的余數。當你得到這個數值後你可以將這個數值附加到你的數據後,當數據被傳送到其他地方後,取出原始數據(可能在傳送過程中被破壞)與附加的CRC數值,然後將這里的原始數據除以之前那個常數(約定好的)然後得到新的CRC值。比較兩個CRC值是否相等即可確認你的數據是否在傳送過程中出現錯誤。
那麼,如何讓你的數據除以一個常數?方法是對你的數據進行必要的編碼處理,逐位元組處理成數字。
那麼這個常數是什麼?你不必關注它是什麼,也不需要關注它是如何獲得的。當你真的要動手寫一個CRC的實現演算法時,我可以告訴你,CRC的理論學家會告訴你。不同長度的常數對應著不同的CRC實現演算法。當這個常數為32位時,也就是這里所說的CRC32。
以上內容你不必全部理解,因為你需要查閱其他資料來獲取CRC完整的理論介紹。
The mathematics behind CRC ?
很多教科書會把CRC與多項式關聯起來。這里的多項式指的是系數為0或1的式子,例如:a0 + a1*x + a2*x^2 + ... + an*x^n。其中a0, a1, ..., an要麼為0要麼為1。我們並不關注x取什麼值。
(如果你要關注,你可以簡單地認為x為2) 這里把a0, a1, ..., an的值取出來排列起來,就可以表示比特流。例如 1 + x + x^3所表示的比特流就為:1101。部分資料會將這個順序顛倒,這個很正常。
什麼是生成多項式?
所謂的生成多項式,就是上面我所說的常數。注意,在這里,一個多項式就表示了一個比特流,也就是一堆1、0,組合起來最終就是一個數值。例如CRC32演算法中,這個生成多項式為:c(x) = 1 + x + x^2 + x^4 + x^5 + x^7 + x^8 + x^10 + x^11 + x^12 + x^16 + x^22 + x^23 + x^26 + x^32。其對應的數字就為:(x^32在實際計算時隱含給出,因此這里沒有包含它的系數),也就是0xEDB88320(多項式對應的數字可能顛倒,顛倒後得到的是0x04C11DB7,其實也是正確的)。
由此可以看出,CRC值也可以看成我們的數據除以一個生成多項式而得到的余數。
如何做這個除法?
套用大部分教科書給出的計算方法,因為任何數據都可以被處理成純數字,因此,在某種程度上說,我們可以直接開始這個除法。盡管事實上這並不是標準的除法。例如,我們的數據為1101011011(方便起見我直接給二進製表示了,從這里也可以看出,CRC是按bit進行計算的),給定的生成多項式(對應的值)為10011。通常的教科書會告訴我們在進行這個除法前,會把我們的數據左移幾位(生成多項式位數-1位),從而可以容納將來計算得到的CRC值(我上面所說的將CRC值附加到原始數據後)。但是為什麼要這樣做?我也不知道。(不知道的東西不能含糊過)那麼,除法就為:
1100001010
_______________
10011 ) 11010110110000 附加了幾個零的新數據
10011......... 這里的減法(希望你不至於忘掉小學算術)是一個異或操作
-----.........
10011........
10011........
-----........
00001....... 逐bit計算
00000.......
-----.......
00010......
00000......
-----......
00101.....
00000.....
-----.....
01011....
00000....
-----....
10110...
10011...
-----...
01010..
00000..
-----..
10100.
10011.
-----.
01110
00000
-----
1110 = 這個余數也就是所謂的CRC值,通常又被稱為校驗值。
希望進行到這里,你可以獲取更多關於CRC的感性認識。而我們所要做的,也就是實現一個CRC的計算演算法。說白了,就是提供一個程序,給定一段數據,以及一個生成多項式(對於CRC32演算法而言該值固定),然後計算得出上面的1110餘數。
『叄』 什麼是crc32校驗
循環冗餘校驗
『肆』 計算機文件的32位循環冗餘校驗和(CRC32)是什麼東西
比如A給B發文件f
A發的文件為af
B收到的文件為bf
如何判斷af==bf呢,也就是文件發送成功呢
令文件af與一個數對應,bf與另一個數對應 只要兩個數相同 那麼af==bf,文件發送成功
CRC32就是將文件對應為一個數的一種演算法
『伍』 crc32演算法中將余數算出後,如何將余數附加到被除數上去,麻煩舉個例子,
CRC32有點長了,用短一點的來說明。
假設使用的生成多項式是G(X)=X3+X+1。4位的原始報文為1010,求編碼後的報文。
解:
1、將生成多項式G(X)=X3+X+1轉換成對應的二進制除數1011。
2、此題生成多項式有4位(R+1)(注意:4位的生成多項式計算所得的校驗碼為3位,R為校驗碼位數),要把原始報文C(X)左移3(R)位變成1010000
3、用生成多項式對應的二進制數對左移3位後的原始報文進行模2除(高位對齊),相當於按位異或:
1010000
1011
----------(高位對齊)
0001000
1011
----------(高位對齊)
0000011
0000(011)
得到的余位011,所以最終編碼為:1010011
『陸』 CRC32 演算法
為了提高編碼效率,在實際運用中大多採用查表法來完成CRC-32校驗,下面是產生CRC-32校驗嗎的子程序。
unsigned long crc_32_tab[256]={
0x00000000, 0x77073096, 0xee0e612c, 0x990951ba, 0x076dc419, 0x706af48f, 0xe963a535, 0x9e6495a3,0x0edb8832,…, 0x5a05df1b, 0x2d02ef8d
};//事先計算出的參數表,共有256項,未全部列出。
unsigned long GenerateCRC32(char xdata * DataBuf,unsigned long len)
{
unsigned long oldcrc32;
unsigned long crc32;
unsigned long oldcrc;
unsigned int charcnt;
char c,t;
oldcrc32 = 0x00000000; //初值為0
charcnt=0;
while (len--) {
t= (oldcrc32 >> 24) & 0xFF; //要移出的位元組的值
oldcrc=crc_32_tab[t]; //根據移出的位元組的值查表
c=DataBuf[charcnt]; //新移進來的位元組值
oldcrc32= (oldcrc32 << 8) | c; //將新移進來的位元組值添在寄存器末位元組中
oldcrc32=oldcrc32^oldcrc; //將寄存器與查出的值進行xor運算
charcnt++;
}
crc32=oldcrc32;
return crc32;
}
參數表可以先在PC機上算出來,也可在程序初始化時完成。下面是用於計算參數表的c語言子程序,在Visual C++ 6.0下編譯通過。
#include <stdio.h>
unsigned long int crc32_table[256];
unsigned long int ulPolynomial = 0x04c11db7;
unsigned long int Reflect(unsigned long int ref, char ch)
{ unsigned long int value(0);
// 交換bit0和bit7,bit1和bit6,類推
for(int i = 1; i < (ch + 1); i++)
{ if(ref & 1)
value |= 1 << (ch - i);
ref >>= 1; }
return value;
}
init_crc32_table()
{ unsigned long int crc,temp;
// 256個值
for(int i = 0; i <= 0xFF; i++)
{ temp=Reflect(i, 8);
crc32_table[i]= temp<< 24;
for (int j = 0; j < 8; j++){
unsigned long int t1,t2;
unsigned long int flag=crc32_table[i]&0x80000000;
t1=(crc32_table[i] << 1);
if(flag==0)
t2=0;
else
t2=ulPolynomial;
crc32_table[i] =t1^t2 ; }
crc=crc32_table[i];
crc32_table[i] = Reflect(crc32_table[i], 32);
}
}
『柒』 誰能給個CRC32演算法的簡單介紹啊
CRC校驗實用程序庫 在數據存儲和數據通訊領域,為了保證數據的正確,就不得不採用檢錯的手段。在諸多檢錯手段中,CRC是最著名的一種。CRC的全稱是循環冗餘校驗,其特點是:檢錯能力極強,開銷小,易於用編碼器及檢測電路實現。從其檢錯能力來看,它所不能發現的錯誤的幾率僅為0.0047%以下。從性能上和開銷上考慮,均遠遠優於奇偶校驗及算術和校驗等方式。因而,在數據存儲和數據通訊領域,CRC無處不在:著名的通訊協議X.25的FCS(幀檢錯序列)採用的是CRC-CCITT,ARJ、LHA等壓縮工具軟體採用的是CRC32,磁碟驅動器的讀寫採用了CRC16,通用的圖像存儲格式GIF、TIFF等也都用CRC作為檢錯手段。
CRC的本質是模-2除法的余數,採用的除數不同,CRC的類型也就不一樣。通常,CRC的除數用生成多項式來表示。最常用的CRC碼的生成多項式如表1所示。
@@10A08800.GIF;表1.最常用的CRC碼及生成多項式@@
由於CRC在通訊和數據處理軟體中經常採用,筆者在實際工作中對其演算法進行了研究和比較,總結並編寫了一個具有最高效率的CRC通用程序庫。該程序採用查表法計算CRC,在速度上優於一般的直接模仿硬體的演算法,可以應用於通訊和數據壓縮程序。
通常的CRC演算法在計算一個數據段的CRC值時,其CRC值是由求解每個數值的CRC值的和對CRC寄存器的值反復更新而得到的。這樣,求解CRC的速度較慢。通過對CRC演算法的研究,我們發現:一個8位數據加到16位累加器中去,只有累加器的高8位或低8位與數據相作用,其結果僅有256種可能的組合值。因而,我們可以用查表法來代替反復的運算,這也同樣適用於CRC32的計算。本文所提供的程序庫中,函數crchware是一般的16位CRC的演算法;mk-crctbl用以在內存中建立一個CRC數值表;crcupdate用以查表並更新CRC累加器的值;crcrevhware和crcrevupdate是反序演算法的兩個函數;BuildCRCTable、CalculateBlockCRC32和UpdateCharac
terCRC32用於CRC32的計算。
/* CRC.C——CRC程序庫 */
#define CRCCCITT 0x1021
#define CCITT-REV 0x8408
#define CRC16 0x8005
#define CRC16-REV 0xA001
#define CRC32-POLYNOMIAL 0xEDB88320L
/* 以上為CRC除數的定義 */
#define NIL 0
#define crcupdate(d,a,t)*(a)=(*(a)<<8)^(t)[(*(a)>>8)^(d)];
#define crcupdate16(d,a,t)*(a)=(*(a)>>8^(t)[(*(a)^(d))&0x00ff])
/* 以上兩個宏可以代替函數crcupdate和crcrevupdate */
#include<stdio.h>
#include<stdlib.h>
#include<alloc.h>
/* 函數crchware是傳統的CRC演算法,其返回值即CRC值 */
unsigned short crchware(data,genpoly,accum)
unsigned short data;/* 輸入的數據 */
unsigned short genpoly;/* CRC除數 */
unsigned short accum;/* CRC累加器值 */
{
static int i;
data<<=8;
for(i=8;i>0;i--)
{
if((data^accum)&0x8000)
accum=(accum<<1)^genpoly;
else
accum<<=1;
data<<=1;
}
return (accum);
}
/* 函數mk-crctbl利用函數crchware建立內存中的CRC數值表 */
unsigned short *mk-crctbl(poly,crcfn);
unsigned short poly;/* CRC除數--CRC生成多項式 */
R>unsigned short (*crcfn)();/* 指向CRC函數(例如crchware)的指針 */
{
/* unsigned short */malloc(); */
unsigned short *crctp;
int i;
if((crctp=(unsigned short*)malloc(256*sizeof(unsigned)))==0)
return 0;
for(i=0;i<256;i++)
crctp[i]=(*crcfn)(i,poly,0);
return crctp;
}
/* 函數mk-crctbl的使用範例 */
if((crctblp=mk-crctbl(CRCCCITT,crchware))==NIL)
{
puts("insuff memory for CRC lookup table.\n");
return 1; */
/* 函數crcupdate用以用查表法計算CRC值並更新CRC累加器值 */
void crcupdate(data,accum,crctab)
unsigned short data;/* 輸入的數據 */
unsigned short *accum;/* 指向CRC累加器的指針 */
unsigned short *crctab;/* 指向內存中CRC表的指針 */
{
static short comb-val;
comb-val=(*accum>>8)^data;
*accum=(*accum<<8)^crctab[comb-val];
}
/* 函數crcrevhware是傳統的CRC演算法的反序演算法,其返回值即CRC值 */
unsigned short crcrevhware(data,genpoly,accum)
unsigned short data;
unsigned short genpoly;
unsigned short accum;
{
static int i;
data<<=1;
for(i=8;i>0;i--)
{
data>>=1;
if((data^accum)&0x0001)
accum=(accum>>1)^genpoly;
else
accum>>=1;
}
return accum;
}
/* 函數crcrevupdate用以用反序查表法計算CRC值並更新CRC累加器值 */
void crcrevupdate(data,accum,crcrevtab)
unsigned short data;
unsigned short *accum;DvNews
『捌』 常用數據校驗方法有哪些
奇偶校驗」。內存中最小的單位是比特,也稱為「位」,位有隻有兩種狀態分別以1和0來標示,每8個連續的比特叫做一個位元組(byte)。不帶奇偶校驗的內存每個位元組只有8位,如果其某一位存儲了錯誤的值,就會導致其存儲的相應數據發生變化,進而導致應用程序發生錯誤。而奇偶校驗就是在每一位元組(8位)之外又增加了一位作為錯誤檢測位。在某位元組中存儲數據之後,在其8個位上存儲的數據是固定的,因為位只能有兩種狀態1或0,假設存儲的數據用位標示為1、1、 1、0、0、1、0、1,那麼把每個位相加(1+1+1+0+0+1+0+1=5),結果是奇數,那麼在校驗位定義為1,反之為0。當CPU讀取存儲的數據時,它會再次把前8位中存儲的數據相加,計算結果是否與校驗位相一致。從而一定程度上能檢測出內存錯誤,奇偶校驗只能檢測出錯誤而無法對其進行修正,同時雖然雙位同時發生錯誤的概率相當低,但奇偶校驗卻無法檢測出雙位錯誤。
MD5的全稱是Message-Digest Algorithm 5,在90年代初由MIT的計算機科學實驗室和RSA Data Security Inc 發明,由 MD2/MD3/MD4 發展而來的。MD5的實際應用是對一段Message(位元組串)產生fingerprint(指紋),可以防止被「篡改」。舉個例子,天天安全網提供下載的MD5校驗值軟體WinMD5.zip,其MD5值是,但你下載該軟體後計算MD5 發現其值卻是,那說明該ZIP已經被他人修改過,那還用不用該軟體那你可自己琢磨著看啦。
MD5廣泛用於加密和解密技術上,在很多操作系統中,用戶的密碼是以MD5值(或類似的其它演算法)的方式保存的,用戶Login的時候,系統是把用戶輸入的密碼計算成MD5值,然後再去和系統中保存的MD5值進行比較,來驗證該用戶的合法性。
MD5校驗值軟體WinMD5.zip漢化版,使用極其簡單,運行該軟體後,把需要計算MD5值的文件用滑鼠拖到正在處理的框里邊,下面將直接顯示其MD5值以及所測試的文件名稱,可以保留多個文件測試的MD5值,選定所需要復制的MD5值,用CTRL+C就可以復制到其它地方了。
參考資料:http://..com/question/3933661.html
CRC演算法原理及C語言實現 -來自(我愛單片機)
摘 要 本文從理論上推導出CRC演算法實現原理,給出三種分別適應不同計算機或微控制器硬體環境的C語言程序。讀者更能根據本演算法原理,用不同的語言編寫出獨特風格更加實用的CRC計算程序。
關鍵詞 CRC 演算法 C語言
1 引言
循環冗餘碼CRC檢驗技術廣泛應用於測控及通信領域。CRC計算可以靠專用的硬體來實現,但是對於低成本的微控制器系統,在沒有硬體支持下實現CRC檢驗,關鍵的問題就是如何通過軟體來完成CRC計算,也就是CRC演算法的問題。
這里將提供三種演算法,它們稍有不同,一種適用於程序空間十分苛刻但CRC計算速度要求不高的微控制器系統,另一種適用於程序空間較大且CRC計算速度要求較高的計算機或微控制器系統,最後一種是適用於程序空間不太大,且CRC計算速度又不可以太慢的微控制器系統。
2 CRC簡介
CRC 校驗的基本思想是利用線性編碼理論,在發送端根據要傳送的k位二進制碼序列,以一定的規則產生一個校驗用的監督碼(既CRC碼)r位,並附在信息後邊,構成一個新的二進制碼序列數共(k+r)位,最後發送出去。在接收端,則根據信息碼和CRC碼之間所遵循的規則進行檢驗,以確定傳送中是否出錯。
16位的CRC碼產生的規則是先將要發送的二進制序列數左移16位(既乘以 )後,再除以一個多項式,最後所得到的余數既是CRC碼,如式(2-1)式所示,其中B(X)表示n位的二進制序列數,G(X)為多項式,Q(X)為整數,R(X)是余數(既CRC碼)。
(2-1)
求CRC 碼所採用模2加減運演算法則,既是不帶進位和借位的按位加減,這種加減運算實際上就是邏輯上的異或運算,加法和減法等價,乘法和除法運算與普通代數式的乘除法運算是一樣,符合同樣的規律。生成CRC碼的多項式如下,其中CRC-16和CRC-CCITT產生16位的CRC碼,而CRC-32則產生的是32位的CRC碼。本文不討論32位的CRC演算法,有興趣的朋友可以根據本文的思路自己去推導計算方法。
CRC-16:(美國二進制同步系統中採用)
CRC-CCITT:(由歐洲CCITT推薦)
CRC-32:
接收方將接收到的二進制序列數(包括信息碼和CRC碼)除以多項式,如果余數為0,則說明傳輸中無錯誤發生,否則說明傳輸有誤,關於其原理這里不再多述。用軟體計算CRC碼時,接收方可以將接收到的信息碼求CRC碼,比較結果和接收到的CRC碼是否相同。
3 按位計算CRC
對於一個二進制序列數可以表示為式(3-1):
(3-1)
求此二進制序列數的CRC碼時,先乘以 後(既左移16位),再除以多項式G(X),所得的余數既是所要求的CRC碼。如式(3-2)所示:
(3-2)
可以設: (3-3)
其中 為整數, 為16位二進制余數。將式(3-3)代入式(3-2)得:
(3-4)
再設: (3-5)
其中 為整數, 為16位二進制余數,將式(3-5)代入式(3-4),如上類推,最後得到:
(3-6)
根據CRC的定義,很顯然,十六位二進制數 既是我們要求的CRC碼。
式(3 -5)是編程計算CRC的關鍵,它說明計算本位後的CRC碼等於上一位CRC碼乘以2後除以多項式,所得的余數再加上本位值除以多項式所得的余數。由此不難理解下面求CRC碼的C語言程序。*ptr指向發送緩沖區的首位元組,len是要發送的總位元組數,0x1021與多項式有關。
[code]
unsigned int cal_crc(unsigned char *ptr, unsigned char len) {
unsigned char i;
unsigned int crc=0;
while(len--!=0) {
for(i=0x80; i!=0; i/=2) {
if((crc&0x8000)!=0) {crc*=2; crc^=0x1021;} /* 余式CRC乘以2再求CRC */
else crc*=2;
if((*ptr&i)!=0) crc^=0x1021; /* 再加上本位的CRC */
}
ptr++;
}
return(crc);
}
[code]
按位計算CRC雖然代碼簡單,所佔用的內存比較少,但其最大的缺點就是一位一位地計算會佔用很多的處理器處理時間,尤其在高速通訊的場合,這個缺點更是不可容忍。因此下面再介紹一種按位元組查錶快速計算CRC的方法。
4 按位元組計算CRC
不難理解,對於一個二進制序列數可以按位元組表示為式(4-1),其中 為一個位元組(共8位)。
(4-1)
求此二進制序列數的CRC碼時,先乘以 後(既左移16位),再除以多項式G(X),所得的余數既是所要求的CRC碼。如式(4-2)所示:
(4-2)
可以設: (4-3)
其中 為整數, 為16位二進制余數。將式(4-3)代入式(4-2)得:
(4-4)
因為:
(4-5)
其中 是 的高八位, 是 的低八位。將式(4-5)代入式(4-4),經整理後得:
(4-6)
再設: (4-7)
其中 為整數, 為16位二進制余數。將式(4-7)代入式(4-6),如上類推,最後得:
(4-
很顯然,十六位二進制數 既是我們要求的CRC碼。
式(4 -7)是編寫按位元組計算CRC程序的關鍵,它說明計算本位元組後的CRC碼等於上一位元組余式CRC碼的低8位左移8位後,再加上上一位元組CRC右移8位(也既取高8位)和本位元組之和後所求得的CRC碼,如果我們把8位二進制序列數的CRC全部計算出來,放如一個表裡,採用查表法,可以大大提高計算速度。由此不難理解下面按位元組求CRC碼的C語言程序。*ptr指向發送緩沖區的首位元組,len是要發送的總位元組數,CRC余式表是按0x11021多項式求出的。
[code]
unsigned int cal_crc(unsigned char *ptr, unsigned char len) {
unsigned int crc;
unsigned char da;
unsigned int crc_ta[256]={ /* CRC余式表 */
0x0000, 0x1021, 0x2042, 0x3063, 0x4084, 0x50a5, 0x60c6, 0x70e7,
0x8108, 0x9129, 0xa14a, 0xb16b, 0xc18c, 0xd1ad, 0xe1ce, 0xf1ef,
0x 1231, 0x0210, 0x3273, 0x2252, 0x52b5, 0x4294, 0x72f7, 0x62d6,
0x9339, 0x8318, 0xb37b, 0xa35a, 0xd3bd, 0xc39c, 0xf3ff, 0xe3de,
0x2462, 0x3443, 0x0420, 0x1401, 0x64e6, 0x74c7, 0x44a4, 0x5485,
0xa56a, 0xb54b, 0x8528, 0x9509, 0xe5ee, 0xf5cf, 0xc5ac, 0xd58d,
0x3653, 0x2672, 0x1611, 0x0630, 0x76d7, 0x66f6, 0x5695, 0x46b4,
0xb75b, 0xa77a, 0x9719, 0x8738, 0xf7df, 0xe7fe, 0xd79d, 0xc7bc,
0x48c4, 0x58e5, 0x6886, 0x78a7, 0x0840, 0x1861, 0x2802, 0x3823,
0xc9cc, 0xd9ed, 0xe98e, 0xf9af, 0x8948, 0x9969, 0xa90a, 0xb92b,
0x5af5, 0x4ad4, 0x7ab7, 0x6a96, 0x1a71, 0x0a50, 0x3a33, 0x2a12,
0xdbfd, 0xcbdc, 0xfbbf, 0xeb9e, 0x9b79, 0x8b58, 0xbb3b, 0xab1a,
0x6ca6, 0x7c87, 0x4ce4, 0x5cc5, 0x2c22, 0x3c03, 0x0c60, 0x1c41,
0xedae, 0xfd8f, 0xcdec, 0xddcd, 0xad2a, 0xbd0b, 0x8d68, 0x9d49,
0x7e97, 0x6eb6, 0x5ed5, 0x4ef4, 0x3e13, 0x2e32, 0x1e51, 0x0e70,
0xff9f, 0xefbe, 0xdfdd, 0xcffc, 0xbf1b, 0xaf3a, 0x9f59, 0x8f78,
0x9188, 0x81a9, 0xb1ca, 0xa1eb, 0xd10c, 0xc12d, 0xf14e, 0xe16f,
0x1080, 0x00a1, 0x30c2, 0x20e3, 0x5004, 0x4025, 0x7046, 0x6067,
0x83b9, 0x9398, 0xa3fb, 0xb3da, 0xc33d, 0xd31c, 0xe37f, 0xf35e,
0x02b1, 0x1290, 0x22f3, 0x32d2, 0x4235, 0x5214, 0x6277, 0x7256,
0xb5ea, 0xa5cb, 0x95a8, 0x8589, 0xf56e, 0xe54f, 0xd52c, 0xc50d,
0x34e2, 0x24c3, 0x14a0, 0x0481, 0x7466, 0x6447, 0x5424, 0x4405,
0xa7db, 0xb7fa, 0x8799, 0x97b8, 0xe75f, 0xf77e, 0xc71d, 0xd73c,
0x26d3, 0x36f2, 0x0691, 0x16b0, 0x6657, 0x7676, 0x4615, 0x5634,
0xd94c, 0xc96d, 0xf90e, 0xe92f, 0x99c8, 0x89e9, 0xb98a, 0xa9ab,
0x5844, 0x4865, 0x7806, 0x6827, 0x18c0, 0x08e1, 0x3882, 0x28a3,
0xcb7d, 0xdb5c, 0xeb3f, 0xfb1e, 0x8bf9, 0x9bd8, 0xabbb, 0xbb9a,
0x4a75, 0x5a54, 0x6a37, 0x7a16, 0x0af1, 0x1ad0, 0x2ab3, 0x3a92,
0xfd2e, 0xed0f, 0xdd6c, 0xcd4d, 0xbdaa, 0xad8b, 0x9de8, 0x8dc9,
0x7c26, 0x6c07, 0x5c64, 0x4c45, 0x3ca2, 0x2c83, 0x1ce0, 0x0cc1,
0xef1f, 0xff3e, 0xcf5d, 0xdf7c, 0xaf9b, 0xbfba, 0x8fd9, 0x9ff8,
0x6e17, 0x7e36, 0x4e55, 0x5e74, 0x2e93, 0x3eb2, 0x0ed1, 0x1ef0
};
crc=0;
while(len--!=0) {
da=(uchar) (crc/256); /* 以8位二進制數的形式暫存CRC的高8位 */
crc<<=8; /* 左移8位,相當於CRC的低8位乘以 */
crc^=crc_ta[da^*ptr]; /* 高8位和當前位元組相加後再查表求CRC ,再加上以前的CRC */
ptr++;
}
return(crc);
}
很顯然,按位元組求CRC時,由於採用了查表法,大大提高了計算速度。但對於廣泛運用的8位微處理器,代碼空間有限,對於要求256個CRC余式表(共512位元組的內存)已經顯得捉襟見肘了,但CRC的計算速度又不可以太慢,因此再介紹下面一種按半位元組求CRC的演算法。
5 按半位元組計算CRC
同樣道理,對於一個二進制序列數可以按位元組表示為式(5-1),其中 為半個位元組(共4位)。
(5-1)
求此二進制序列數的CRC碼時,先乘以 後(既左移16位),再除以多項式G(X),所得的余數既是所要求的CRC碼。如式(4-2)所示:
(5-2)
可以設: (5-3)
其中 為整數, 為16位二進制余數。將式(5-3)代入式(5-2)得:
(5-4)
因為:
(5-5)
其中 是 的高4位, 是 的低12位。將式(5-5)代入式(5-4),經整理後得:
(5-6)
再設: (5-7)
其中 為整數, 為16位二進制余數。將式(5-7)代入式(5-6),如上類推,最後得:
(5-
很顯然,十六位二進制數 既是我們要求的CRC碼。
式(5 -7)是編寫按位元組計算CRC程序的關鍵,它說明計算本位元組後的CRC碼等於上一位元組CRC碼的低12位左移4位後,再加上上一位元組余式CRC右移4位(也既取高4位)和本位元組之和後所求得的CRC碼,如果我們把4位二進制序列數的CRC全部計算出來,放在一個表裡,採用查表法,每個位元組算兩次(半位元組算一次),可以在速度和內存空間取得均衡。由此不難理解下面按半位元組求CRC碼的C語言程序。*ptr指向發送緩沖區的首位元組,len是要發送的總位元組數,CRC余式表是按0x11021多項式求出的。
unsigned cal_crc(unsigned char *ptr, unsigned char len) {
unsigned int crc;
unsigned char da;
unsigned int crc_ta[16]={ /* CRC余式表 */
0x0000,0x1021,0x2042,0x3063,0x4084,0x50a5,0x60c6,0x70e7,
0x8108,0x9129,0xa14a,0xb16b,0xc18c,0xd1ad,0xe1ce,0xf1ef,
}
crc=0;
while(len--!=0) {
da=((uchar)(crc/256))/16; /* 暫存CRC的高四位 */
crc<<=4; /* CRC右移4位,相當於取CRC的低12位)*/
crc^=crc_ta[da^(*ptr/16)]; /* CRC的高4位和本位元組的前半位元組相加後查表計算CRC,
然後加上上一次CRC的余數 */
da=((uchar)(crc/256))/16; /* 暫存CRC的高4位 */
crc<<=4; /* CRC右移4位, 相當於CRC的低12位) */
crc^=crc_ta[da^(*ptr&0x0f)]; /* CRC的高4位和本位元組的後半位元組相加後查表計算CRC,
然後再加上上一次CRC的余數 */
ptr++;
}
return(crc);
}
[code]
5 結束語
以上介紹的三種求CRC的程序,按位求法速度較慢,但佔用最小的內存空間;按位元組查表求CRC的方法速度較快,但佔用較大的內存;按半位元組查表求CRC的方法是前兩者的均衡,即不會佔用太多的內存,同時速度又不至於太慢,比較適合8位小內存的單片機的應用場合。以上所給的C程序可以根據各微處理器編譯器的特點作相應的改變,比如把CRC余式表放到程序存儲區內等。[/code]
hjzgq 回復於:2003-05-15 14:12:51
CRC32演算法學習筆記以及如何用java實現 出自:csdn bootcool 2002年10月19日 23:11 CRC32演算法學習筆記以及如何用java實現
CRC32演算法學習筆記以及如何用java實現
一:說明
論壇上關於CRC32校驗演算法的詳細介紹不多。前幾天偶爾看到Ross N. Williams的文章,總算把CRC32演算法的來龍去脈搞清楚了。本來想把原文翻譯出來,但是時間參促,只好把自己的一些學習心得寫出。這樣大家可以更快的了解CRC32的主要思想。由於水平有限,還懇請大家指正。原文可以訪問:http://www.repairfaq.org/filipg/LINK/F_crc_v31.html 。
二:基本概念及相關介紹
2.1 什麼是CRC
在遠距離數據通信中,為確保高效而無差錯地傳送數據,必須對數據進行校驗即差錯控制。循環冗餘校驗CRC(Cyclic Rendancy Check/Code)是對一個傳送數據塊進行校驗,是一種高效的差錯控制方法。
CRC校驗採用多項式編碼方法。多項式乘除法運算過程與普通代數多項式的乘除法相同。多項式的加減法運算以2為模,加減時不進,錯位,如同邏輯異或運算。
2.2 CRC的運算規則
CRC加法運算規則:0+0=0
0+1=1
1+0=1
1+1=0 (注意:沒有進位)
CRC減法運算規則:
0-0=0
0-1=1
1-0=1
1-1=0
CRC乘法運算規則:
0*0=0
0*1=0
1*0=0
1*1=1
CRC除法運算規則:
1100001010 (注意:我們並不關心商是多少。)
_______________
10011 11010110110000
10011,,.,,....
-----,,.,,....
10011,.,,....
10011,.,,....
-----,.,,....
00001.,,....
00000.,,....
-----.,,....
00010,,....
00000,,....
-----,,....
00101,....
00000,....
-----,....
01011....
00000....
-----....
10110...
10011...
-----...
01010..
00000..
-----..
10100.
10011.
-----.
01110
00000
-----
1110 = 余數
2.3 如何生成CRC校驗碼
(1) 設G(X)為W階,在數據塊末尾添加W個0,使數據塊為M+ W位,則相應的多項式為XrM(X);
(2) 以2為模,用對應於G(X)的位串去除對應於XrM(X)的位串,求得余數位串;
(3) 以2為模,從對應於XrM(X)的位串中減去余數位串,結果就是為數據塊生成的帶足夠校驗信息的CRC校驗碼位串。
2.4 可能我們會問那如何選擇G(x)
可以說選擇G(x)不是一件很容易的事。一般我們都使用已經被大量的數據,時間檢驗過的,正確的,高效的,生成多項式。一般有以下這些:
16 bits: (16,12,5,0) [X25 standard]
(16,15,2,0) ["CRC-16"]
32 bits: (32,26,23,22,16,12,11,10,8,7,5,4,2,1,0) [Ethernet]
三: 如何用軟體實現CRC演算法
現在我們主要問題就是如何實現CRC校驗,編碼和解碼。用硬體實現目前是不可能的,我們主要考慮用軟體實現的方法。
以下是對作者的原文的翻譯:
我們假設有一個4 bits的寄存器,通過反復的移位和進行CRC的除法,最終該寄存器中的值就是我們所要求的余數。
3 2 1 0 Bits
+---+---+---+---+
Pop <-- | | | | | <----- Augmented message(已加0擴張的原始數據)
+---+---+---+---+
1 0 1 1 1 = The Poly
(注意: The augmented message is the message followed by W zero bits.)
依據這個模型,我們得到了一個最最簡單的演算法:
把register中的值置0.
把原始的數據後添加r個0.
While (還有剩餘沒有處理的數據)
Begin
把register中的值左移一位,讀入一個新的數據並置於register的0 bit的位置。
If (如果上一步的左移操作中的移出的一位是1)
register = register XOR Poly.
End
現在的register中的值就是我們要求的crc余數。
我的學習筆記:
可為什麼要這樣作呢?我們從下面的實例來說明:
1100001010
_______________
10011 11010110110000
10011,,.,,....
-----,,.,,....
-》 10011,.,,....
10011,.,,....
-----,.,,....
-》 00001.,,....
00000.,,....
-----.,,....
00010,,....
00000,,....
-----,,....
00101,....
00000,....
我們知道G(x)的最高位一定是1,而商1還是商0是由被除數的最高位決定的。而我們並不關心商究竟是多少,我們關心的是余數。例如上例中的G(x)有5 位。我們可以看到每一步作除法運算所得的余數其實就是被除數的最高位後的四位於G(x)的後四位XOR而得到的。那被除數的最高位有什麼用呢?我們從打記號的兩個不同的余數就知道原因了。當被除數的最高位是1時,商1然後把最高位以後的四位於G(x)的後四位XOR得到余數;如果最高位是0,商0然後把被除數的最高位以後的四位於G(x)的後四位XOR得到余數,而我們發現其實這個余數就是原來被除數最高位以後的四位的值。也就是說如果最高位是0就不需要作XOR的運算了。到這我們總算知道了為什麼先前要這樣建立模型,而演算法的原理也就清楚了。
以下是對作者的原文的翻譯:
可是這樣實現的演算法卻是非常的低效。為了加快它的速度,我們使它一次能處理大於4 bit的數據。也就是我們想要實現的32 bit的CRC校驗。我們還是假設有和原來一樣的一個4 "bit"的register。不過它的每一位是一個8 bit的位元組。
3 2 1 0 Bytes
+----+----+----+----+
Pop <-- | | | | | <----- Augmented message
+----+----+----+----+
1<------32 bits------> (暗含了一個最高位的「1」)
根據同樣的原理我們可以得到如下的演算法:
While (還有剩餘沒有處理的數據)
Begin
檢查register頭位元組,並取得它的值
求不同偏移處多項式的和
register左移一個位元組,最右處存入新讀入的一個位元組
把register的值和多項式的和進行XOR運算
End
我的學習筆記:
可是為什麼要這樣作呢? 同樣我們還是以一個簡單的例子說明問題:
假設有這樣的一些值:
當前register中的值: 01001101
4 bit應該被移出的值:1011
生成多項式為: 101011100
Top Register
---- --------
1011 01001101
1010 11100 + (CRC XOR)
-------------
0001 10101101
首4 bits 不為0說明沒有除盡,要繼續除:
0001 10101101
1 01011100 + (CRC XOR)
-------------
0000 11110001
^^^^
首4 bits 全0說明不用繼續除了。
那按照演算法的意思作又會有什麼樣的結果呢?
1010 11100
1 01011100+
-------------
1011 10111100
1011 10111100
1011 01001101+
-------------
0000 11110001
現在我們看到了這樣一個事實,那就是這樣作的結果和上面的結果是一致的。這也說明了演算法中為什麼要先把多項式的值按不同的偏移值求和,然後在和 register進行異或運算的原因了。另外我們也可以看到,每一個頭位元組對應一個值。比如上例中:1011,對應01001101。那麼對於 32 bits 的CRC 頭位元組,依據我們的模型。頭8 bit就該有 2^8個,即有256個值與它對應。於是我們可以預先建立一個表然後,編碼時只要取出輸入數據的頭一個位元組然後從表中查找對應的值即可。這樣就可以大大提高編碼的速度了。
+----+----+----+----+
+-----< | | | | | <----- Augmented message
| +----+----+----+----+
| ^
| |
| XOR
| |
| 0+----+----+----+----+
v +----+----+----+----+
| +----+----+----+----+
| +----+----+----+----+
| +----+----+----+----+
| +----+----+----+----+
| +----+----+----+----+
+-----> +----+----+----+----+
+----+----+----+----+
+----+----+----+----+
+----+----+----+----+
+----+----+----+----+
255+----+----+----+----+
以下是對作者的原文的翻譯:
上面的演算法可以進一步優化為:
1:register左移一個位元組,從原始數據中讀入一個新的位元組.
2:利用剛從register移出的位元組作為下標定位 table 中的一個32位的值
3:把這個值XOR到register中。
4:如果還有未處理的數據則回到第一步繼續執行。
用C可以寫成這樣:
r=0;
while (len--)
r = ((r << | p*++) ^ t[(r >> 24) & 0xFF];
可是這一演算法是針對已經用0擴展了的原始數據而言的。所以最後還要加入這樣的一個循環,把W個0加入原始數據。
我的學習筆記:
注意不是在預處理時先加入W個0,而是在上面演算法描述的循環後加入這樣的處理。
for (i=0; i<W/4; i++)
r = (r << ^ t[(r >> 24) & 0xFF];
所以是W/4是因為若有W個0,因為我們以位元組(8位)為單位的,所以是W/4個0 位元組。注意不是循環w/8次
以下是對作者的原文的翻譯:
1:對於尾部的w/4個0位元組,事實上它們的作用只是確保所有的原始數據都已被送入register,並且被演算法處理。
2:如果register中的初始值是0,那麼開始的4次循環,作用只是把原始數據的頭4個位元組送入寄存器。(這要結合table表的生成來看)。就算 register的初始值不是0,開始的4次循環也只是把原始數據的頭4個位元組把它們和register的一些常量XOR,然後送入register中。
3A xor B) xor C = A xor (B xor C)
總上所述,原來的演算法可以改為:
+-----<Message (non augmented)
|
v 3 2 1 0 Bytes
| +----+----+----+----+
XOR----<| | | | |
| +----+----+----+----+
| ^
| |
| XOR
| |
| 0+----+----+----+----+
v +----+----+----+----+
| +----+----+----+----+
| +----+----+----+----+
| +----+----+----+----+
| +----+----+----+----+
| +----+----+----+----+
+----->+----+----+----+----+
+----+----+----+----+
+----+----+----+----+
+----+----+----+----+
+----+----+----+----+
255+----+----+----+----+
演算法:
1:register左移一個位元組,從原始數據中讀入一個新的位元組.
2:利用剛從register移出的位元組和讀入的新位元組XOR從而產生定位下標,從table中取得相應的值。
3:把該值XOR到register中
4:如果還有未處理的數據則回到第一步繼續執行。
我的學習筆記:
對這一演算法我還是不太清楚,或許和XOR的性質有關,懇請大家指出為什麼?
謝謝。
到這,我們對CRC32的演算法原理和思想已經基本搞清了。下章,我想著重根據演算法思想用java語言實現。
hjzgq 回復於:2003-05-15 14:14:51
數學演算法一向都是密碼加密的核心,但在一般的軟路加密中,它似乎並不太為人們所關心,因為大多數時候軟體加密本身實現的都是一種編程上的技巧。但近幾年來隨著序列號加密程序的普及,數學演算法在軟體加密中的比重似乎是越來越大了。
我們先來看看在網路上大行其道的序列號加密的工作原理。當用戶從網路上下載某個Shareware -- 共享軟體後,一般都有使用時間上的限制,當過了共享軟體的試用期後,你必須到這個軟體的公司去注冊後方能繼續使用。注冊過程一般是用戶把自己的私人信息(一般主要指名字)連同信用卡號碼告訴給軟體公司,軟體公司會根據用戶的信息計算出一個序列碼出來,在用戶得到這個序列碼後,按照注冊需要的步驟在軟體中輸入注冊信息和注冊碼,其注冊信息的合法性由軟體驗證通過後,軟體就會取消掉本身的各種限制。這種加密實現起來比較簡單,不需要額外的成本,用戶購買也非常方便,在網上的軟體80%都是以這種方式來保護的。
我們可以注意到軟體驗證序列號的合法性過程,其實就是驗證用戶名與序列號之間的換算關系是否正確的過程。其驗證最基本的有兩種,一種是按用戶輸入的姓名來生成注冊碼,再同用戶輸入的注冊碼相比較,公式表示如下:
序列號 = F(用戶名稱)
『玖』 CRC32的計算方法
CRC的本質是模-2除法的余數,採用的除數不同,CRC的類型也就不一樣。通常,CRC的除數用生成多項式來表示。 最常用的CRC碼及生成多項式名稱生成多項式。
CRC-12:
(9)crc32校驗演算法擴展閱讀
通常的CRC演算法在計算一個數據段的CRC值時,其CRC值是由求解每個數值的CRC值的和對CRC寄存器的值反復更新而得到的。這樣,求解CRC的速度較慢。通過對CRC演算法的研究,我們發現:一個8位數據加到16位累加器中去,只有累加器的高8位或低8位與數據相作用,其結果僅有256種可能的組合值。
因而,我們可以用查表法來代替反復的運算,這也同樣適用於CRC32的計算。本文所提供的程序庫中,函數crchware是一般的16位CRC的演算法。mk-crctbl用以在內存中建立一個CRC數值表。