當前位置:首頁 » 操作系統 » 模型分類演算法

模型分類演算法

發布時間: 2022-07-10 17:20:18

㈠ 數學建模建模分為幾種類型,分別用什麼法求解

數學建模應當掌握的十類演算法
1、蒙特卡羅演算法(該演算法又稱隨機性模擬演算法,是通過計算機模擬來解決問題的算 法,同時可以通過模擬可以來檢驗自己模型的正確性,是比賽時必用的方法) 2、數據擬合、參數估計、插值等數據處理演算法(比賽中通常會遇到大量的數據需要 處理,而處理數據的關鍵就在於這些演算法,通常使用Matlab作為工具) 3、線性規劃、整數規劃、多元規劃、二次規劃等規劃類問題(建模競賽大多數問題 屬於最優化問題,很多時候這些問題可以用數學規劃演算法來描述,通常使用Lindo、 Lingo軟體實現) 4、圖論演算法(這類演算法可以分為很多種,包括最短路、網路流、二分圖等演算法,涉 及到圖論的問題可以用這些方法解決,需要認真准備) 5、動態規劃、回溯搜索、分治演算法、分支定界等計算機演算法(這些演算法是演算法設計 中比較常用的方法,很多場合可以用到競賽中) 6、最優化理論的三大非經典演算法:模擬退火法、神經網路、遺傳演算法(這些問題是 用來解決一些較困難的最優化問題的演算法,對於有些問題非常有幫助,但是演算法的實 現比較困難,需慎重使用) 7、網格演算法和窮舉法(網格演算法和窮舉法都是暴力搜索最優點的演算法,在很多競賽 題中有應用,當重點討論模型本身而輕視演算法的時候,可以使用這種暴力方案,最好 使用一些高級語言作為編程工具) 8、一些連續離散化方法(很多問題都是實際來的,數據可以是連續的,而計算機只 認的是離散的數據,因此將其離散化後進行差分代替微分、求和代替積分等思想是非 常重要的) 9、數值分析演算法(如果在比賽中採用高級語言進行編程的話,那一些數值分析中常 用的演算法比如方程組求解、矩陣運算、函數積分等演算法就需要額外編寫庫函數進行調 用) 10、圖象處理演算法(賽題中有一類問題與圖形有關,即使與圖形無關,論文中也應該 要不乏圖片的,這些圖形如何展示以及如何處理就是需要解決的問題,通常使用Matlab 進行處理)

㈡ 三種經典的數據挖掘演算法

演算法,可以說是很多技術的核心,而數據挖掘也是這樣的。數據挖掘中有很多的演算法,正是這些演算法的存在,我們的數據挖掘才能夠解決更多的問題。如果我們掌握了這些演算法,我們就能夠順利地進行數據挖掘工作,在這篇文章我們就給大家簡單介紹一下數據挖掘的經典演算法,希望能夠給大家帶來幫助。
1.KNN演算法
KNN演算法的全名稱叫做k-nearest neighbor classification,也就是K最近鄰,簡稱為KNN演算法,這種分類演算法,是一個理論上比較成熟的方法,也是最簡單的機器學習演算法之一。該方法的思路是:如果一個樣本在特徵空間中的k個最相似,即特徵空間中最鄰近的樣本中的大多數屬於某一個類別,則該樣本也屬於這個類別。KNN演算法常用於數據挖掘中的分類,起到了至關重要的作用。
2.Naive Bayes演算法
在眾多的分類模型中,應用最為廣泛的兩種分類模型是決策樹模型(Decision Tree Model)和樸素貝葉斯模型(Naive Bayesian Model,NBC)。樸素貝葉斯模型發源於古典數學理論,有著堅實的數學基礎,以及穩定的分類效率。同時,NBC模型所需估計的參數很少,對缺失數據不太敏感,演算法也比較簡單。理論上,NBC模型與其他分類方法相比具有最小的誤差率。但是實際上並非總是如此,這是因為NBC模型假設屬性之間相互獨立,這個假設在實際應用中往往是不成立的,這給NBC模型的正確分類帶來了一定影響。在屬性個數比較多或者屬性之間相關性較大時,NBC模型的分類效率比不上決策樹模型。而在屬性相關性較小時,NBC模型的性能最為良好。這種演算法在數據挖掘工作使用率還是挺高的,一名優秀的數據挖掘師一定懂得使用這一種演算法。
3.CART演算法
CART, 也就是Classification and Regression Trees。就是我們常見的分類與回歸樹,在分類樹下面有兩個關鍵的思想。第一個是關於遞歸地劃分自變數空間的想法;第二個想法是用驗證數據進行剪枝。這兩個思想也就決定了這種演算法的地位。
在這篇文章中我們給大家介紹了關於KNN演算法、Naive Bayes演算法、CART演算法的相關知識,其實這三種演算法在數據挖掘中占據著很高的地位,所以說如果要從事數據挖掘行業一定不能忽略這些演算法的學習。

㈢ 常見的分類方法

主要分類方法介紹解決分類問題的方法很多[40-42] ,單一的分類方法主要包括:決策樹、貝葉斯、人工神經網路、K-近鄰、支持向量機和基於關聯規則的分類等;另外還有用於組合單一分類方法的集成學習演算法,如Bagging和Boosting等。

(1)決策樹

決策樹是用於分類和預測的主要技術之一,決策樹學習是以實例為基礎的歸納學習演算法,它著眼於從一組無次序、無規則的實例中推理出以決策樹表示的分類規則。構造決策樹的目的是找出屬性和類別間的關系,用它來預測將來未知類別的記錄的類別。它採用自頂向下的遞歸方式,在決策樹的內部節點進行屬性的比較,並根據不同屬性值判斷從該節點向下的分支,在決策樹的葉節點得到結論。

主要的決策樹演算法有ID3、C4.5(C5.0)、CART、PUBLIC、SLIQ和SPRINT演算法等。它們在選擇測試屬性採用的技術、生成的決策樹的結構、剪枝的方法以及時刻,能否處理大數據集等方面都有各自的不同之處。

(2)貝葉斯

貝葉斯(Bayes)分類演算法是一類利用概率統計知識進行分類的演算法,如樸素貝葉斯(Naive

Bayes)演算法。這些演算法主要利用Bayes定理來預測一個未知類別的樣本屬於各個類別的可能性,選擇其中可能性最大的一個類別作為該樣本的最終類別。由於貝葉斯定理的成立本身需要一個很強的條件獨立性假設前提,而此假設在實際情況中經常是不成立的,因而其分類准確性就會下降。為此就出現了許多降低獨立性假設的貝葉斯分類演算法,如TAN(Tree
Augmented Na?ve Bayes)演算法,它是在貝葉斯網路結構的基礎上增加屬性對之間的關聯來實現的。

(3)人工神經網路

人工神經網路(Artificial
Neural
Networks,ANN)是一種應用類似於大腦神經突觸聯接的結構進行信息處理的數學模型。在這種模型中,大量的節點(或稱」神經元」,或」單元」)之間相互聯接構成網路,即」神經網路」,以達到處理信息的目的。神經網路通常需要進行訓練,訓練的過程就是網路進行學習的過程。訓練改變了網路節點的連接權的值使其具有分類的功能,經過訓練的網路就可用於對象的識別。

目前,神經網路已有上百種不同的模型,常見的有BP網路、徑向基RBF網路、Hopfield網路、隨機神經網路(Boltzmann機)、競爭神經網路(Hamming網路,自組織映射網路)等。但是當前的神經網路仍普遍存在收斂速度慢、計算量大、訓練時間長和不可解釋等缺點。

(4)k-近鄰

k-近鄰(kNN,k-Nearest

Neighbors)演算法是一種基於實例的分類方法。該方法就是找出與未知樣本x距離最近的k個訓練樣本,看這k個樣本中多數屬於哪一類,就把x歸為那一類。k-近鄰方法是一種懶惰學習方法,它存放樣本,直到需要分類時才進行分類,如果樣本集比較復雜,可能會導致很大的計算開銷,因此無法應用到實時性很強的場合。

(5)支持向量機

支持向量機(SVM,Support
Vector Machine)是Vapnik根據統計學習理論提出的一種新的學習方法[43]
,它的最大特點是根據結構風險最小化准則,以最大化分類間隔構造最優分類超平面來提高學習機的泛化能力,較好地解決了非線性、高維數、局部極小點等問題。對於分類問題,支持向量機演算法根據區域中的樣本計算該區域的決策曲面,由此確定該區域中未知樣本的類別。

(6)基於關聯規則的分類

關聯規則挖掘是數據挖掘中一個重要的研究領域。近年來,對於如何將關聯規則挖掘用於分類問題,學者們進行了廣泛的研究。關聯分類方法挖掘形如condset→C的規則,其中condset是項(或屬性-值對)的集合,而C是類標號,這種形式的規則稱為類關聯規則(class
association
rules,CARS)。關聯分類方法一般由兩步組成:第一步用關聯規則挖掘演算法從訓練數據集中挖掘出所有滿足指定支持度和置信度的類關聯規則;第二步使用啟發式方法從挖掘出的類關聯規則中挑選出一組高質量的規則用於分類。屬於關聯分類的演算法主要包括CBA[44]
,ADT[45] ,CMAR[46] 等。

(7)集成學習(Ensemble Learning)

實際應用的復雜性和數據的多樣性往往使得單一的分類方法不夠有效。因此,學者們對多種分類方法的融合即集成學習進行了廣泛的研究。集成學習已成為國際機器學習界的研究熱點,並被稱為當前機器學習四個主要研究方向之一。

集成學習是一種機器學習範式,它試圖通過連續調用單個的學習演算法,獲得不同的基學習器,然後根據規則組合這些學習器來解決同一個問題,可以顯著的提高學習系統的泛化能力。組合多個基學習器主要採用(加權)投票的方法,常見的演算法有裝袋[47]
(Bagging),提升/推進[48, 49] (Boosting)等。

有關分類器的集成學習見圖2-5。集成學習由於採用了投票平均的方法組合多個分類器,所以有可能減少單個分類器的誤差,獲得對問題空間模型更加准確的表示,從而提高分類器的分類准確度。

圖2-5:分類器的集成學習

以上簡單介紹了各種主要的分類方法,應該說其都有各自不同的特點及優缺點。對於資料庫負載的自動識別,應該選擇哪種方法呢?用來比較和評估分類方法的標准[50]

主要有:(1)預測的准確率。模型正確地預測新樣本的類標號的能力;(2)計算速度。包括構造模型以及使用模型進行分類的時間;(3)強壯性。模型對雜訊數據或空缺值數據正確預測的能力;(4)可伸縮性。對於數據量很大的數據集,有效構造模型的能力;(5)模型描述的簡潔性和可解釋性。模型描述愈簡潔、愈容易理解,則愈受歡迎。

㈣ 流失預警建模時需要輸出模型的規則,則選用哪一種分類演算法

遺傳演算法(Genetic Algorithm)是模擬達爾文生物進化論的自然選擇和遺傳學機理的生物進化過程的計算模型,是一種通過模擬自然進化過程搜索最優解的方法。遺傳演算法是從代表問題可能潛在的解集的一個種群(population)開始的,而一個種群則由經過基因(gene)編碼的一定數目的個體(indivial)組成。每個個體實際上是染色體(chromosome)帶有特徵的實體。染色體作為遺傳物質的主要載體,即多個基因的集合,其內部表現(即基因型)是某種基因組合,它決定了個體的形狀的外部表現,如黑頭發的特徵是由染色體中控制這一特徵的某種基因組合決定的。

㈤ 常見決策樹分類演算法都有哪些

在機器學習中,有一個體系叫做決策樹,決策樹能夠解決很多問題。在決策樹中,也有很多需要我們去學習的演算法,要知道,在決策樹中,每一個演算法都是實用的演算法,所以了解決策樹中的演算法對我們是有很大的幫助的。在這篇文章中我們就給大家介紹一下關於決策樹分類的演算法,希望能夠幫助大家更好地去理解決策樹。
1.C4.5演算法
C4.5演算法就是基於ID3演算法的改進,這種演算法主要包括的內容就是使用信息增益率替換了信息增益下降度作為屬性選擇的標准;在決策樹構造的同時進行剪枝操作;避免了樹的過度擬合情況;可以對不完整屬性和連續型數據進行處理;使用k交叉驗證降低了計算復雜度;針對數據構成形式,提升了演算法的普適性等內容,這種演算法是一個十分使用的演算法。
2.CLS演算法
CLS演算法就是最原始的決策樹分類演算法,基本流程是,從一棵空數出發,不斷的從決策表選取屬性加入數的生長過程中,直到決策樹可以滿足分類要求為止。CLS演算法存在的主要問題是在新增屬性選取時有很大的隨機性。
3.ID3演算法
ID3演算法就是對CLS演算法的最大改進是摒棄了屬性選擇的隨機性,利用信息熵的下降速度作為屬性選擇的度量。ID3是一種基於信息熵的決策樹分類學習演算法,以信息增益和信息熵,作為對象分類的衡量標准。ID3演算法結構簡單、學習能力強、分類速度快適合大規模數據分類。但同時由於信息增益的不穩定性,容易傾向於眾數屬性導致過度擬合,演算法抗干擾能力差。
3.1.ID3演算法的優缺點
ID3演算法的優點就是方法簡單、計算量小、理論清晰、學習能力較強、比較適用於處理規模較大的學習問題。缺點就是傾向於選擇那些屬性取值比較多的屬性,在實際的應用中往往取值比較多的屬性對分類沒有太大價值、不能對連續屬性進行處理、對雜訊數據比較敏感、需計算每一個屬性的信息增益值、計算代價較高。
3.2.ID3演算法的核心思想
根據樣本子集屬性取值的信息增益值的大小來選擇決策屬性,並根據該屬性的不同取值生成決策樹的分支,再對子集進行遞歸調用該方法,當所有子集的數據都只包含於同一個類別時結束。最後,根據生成的決策樹模型,對新的、未知類別的數據對象進行分類。
在這篇文章中我們給大家介紹了決策樹分類演算法的具體內容,包括有很多種演算法。從中我們不難發現決策樹的演算法都是經過不不斷的改造趨於成熟的。所以說,機器學習的發展在某種程度上就是由於這些演算法的進步而來的。

㈥ 用於數據挖掘的分類演算法有哪些,各有何優劣

常見的機器學習分類演算法就有,不常見的更是數不勝數,那麼我們針對某個分類問題怎麼來選擇比較好的分類演算法呢?下面介紹一些演算法的優缺點:

1. 樸素貝葉斯
比較簡單的演算法,所需估計的參數很少,對缺失數據不太敏感。如果條件獨立性假設成立,即各特徵之間相互獨立,樸素貝葉斯分類器將會比判別模型,如邏輯回歸收斂得更快,因此只需要較少的訓練數據。就算該假設不成立,樸素貝葉斯分類器在實踐中仍然有著不俗的表現。如果你需要的是快速簡單並且表現出色,這將是個不錯的選擇。其主要缺點現實生活中特徵之間相互獨立的條件比較難以實現。

2. 邏輯回歸
模型訓練時,正則化方法較多,而且你不必像在用樸素貝葉斯那樣擔心你的特徵是否相關。與決策樹與支持向量機相比,邏輯回歸模型還會得到一個不錯的概率解釋,你甚至可以輕松地利用新數據來更新模型(使用在線梯度下降演算法)。如果你需要一個概率架構(比如簡單地調節分類閾值,指明不確定性,獲得置信區間),或者你以後想將更多的訓練數據快速整合到模型中去,邏輯回歸是一個不錯的選擇。

3. 決策樹
決策樹的分類過程易於解釋說明。它可以毫無壓力地處理特徵間的交互關系並且是非參數化的,因此你不必擔心異常值或者數據是否線性可分。它的一個缺點就是不支持在線學習,於是在新樣本到來後,決策樹需要全部重建。另一個缺點是容易過擬合,但這也就是諸如隨機森林(或提升樹)之類的集成方法的切入點。另外,隨機森林經常是多分類問題的贏家(通常比支持向量機好上那麼一點),它快速並且可調,同時你無須擔心要像支持向量機那樣調一大堆參數,所以隨機森林相當受歡迎。

4. 支持向量機
高准確率,為避免過擬合提供了很好的理論保證,而且就算數據在原特徵空間線性不可分,只要給個合適的核函數,它就能運行得很好。在超高維的文本分類問題中特別受歡迎。可惜內存消耗大,難以解釋,運行和調參也有些煩人,所以我認為隨機森林要開始取而代之了。

但是,好的數據卻要優於好的演算法,設計優良特徵比優良的演算法好很多。假如你有一個超大數據集,那麼無論你使用哪種演算法可能對分類性能都沒太大影響(此時就根據速度和易用性來進行抉擇)。
如果你真心在乎准確率,你一定得嘗試多種多樣的分類器,並且通過交叉驗證選擇最優。

㈦ 人工智慧的分類演算法是什麼

人工智慧的分類是兩大類中之一,另一個是預測,分類就是使用模型學習分類模式

㈧ 分類和聚類的區別及各自的常見演算法

1、分類和聚類的區別:
Classification (分類),對於一個classifier,通常需要你告訴它「這個東西被分為某某類」這樣一些例子,理想情況下,一個 classifier 會從它得到的訓練集中進行「學習」,從而具備對未知數據進行分類的能力,這種提供訓練數據的過程通常叫做supervised learning (監督學習),
Clustering (聚類),簡單地說就是把相似的東西分到一組,聚類的時候,我們並不關心某一類是什麼,我們需要實現的目標只是把相似的東西聚到一起。因此,一個聚類演算法通常只需要知道如何計算相似度就可以開始工作了,因此 clustering 通常並不需要使用訓練數據進行學習,這在Machine Learning中被稱作unsupervised learning (無監督學習).
2、常見的分類與聚類演算法
所謂分類,簡單來說,就是根據文本的特徵或屬性,劃分到已有的類別中。如在自然語言處理NLP中,我們經常提到的文本分類便就是一個分類問題,一般的模式分類方法都可用於文本分類研究。常用的分類演算法包括:決策樹分類法,樸素貝葉斯分類演算法(native Bayesian classifier)、基於支持向量機(SVM)的分類器,神經網路法,k-最近鄰法(k-nearestneighbor,kNN),模糊分類法等等。
分類作為一種監督學習方法,要求必須事先明確知道各個類別的信息,並且斷言所有待分類項都有一個類別與之對應。但是很多時候上述條件得不到滿足,尤其是在處理海量數據的時候,如果通過預處理使得數據滿足分類演算法的要求,則代價非常大,這時候可以考慮使用聚類演算法。
而K均值(K-mensclustering)聚類則是最典型的聚類演算法(當然,除此之外,還有很多諸如屬於劃分法K中心點(K-MEDOIDS)演算法、CLARANS演算法;屬於層次法的BIRCH演算法、CURE演算法、CHAMELEON演算法等;基於密度的方法:DBSCAN演算法、OPTICS演算法、DENCLUE演算法等;基於網格的方法:STING演算法、CLIQUE演算法、WAVE-CLUSTER演算法;基於模型的方法)。

㈨ 可用於分類的演算法有哪些

太多了,
最不實用但是分類錯誤率最低的:貝葉斯方法.
最簡單的是最近鄰方法,從最近鄰方法又引申出現在極為流行的基於實例(或基於記憶)的方法(Memory Based).
經典的:隱馬爾可夫模型(HMM),最大熵,條件隨機場(CRF,這個比較新)
最流行的:winnow,bagging,ada boost等等

㈩ 數學建模分類模型有哪些

數學建模常用模型有哪些?

1、蒙特卡羅演算法(該演算法又稱隨機性模擬演算法,是通過計算機模擬來解決問題的算

法,同時可以通過模擬可以來檢驗自己模型的正確性,是比賽時必用的方法)

2、數據擬合、參數估計、插值等數據處理演算法(比賽中通常會遇到大量的數據需要

處理,而處理數據的關鍵就在於這些演算法,通常使用Matlab作為工具)

3、線性規劃、整數規劃、多元規劃、二次規劃等規劃類問題(建模競賽大多數問題

屬於最優化問題,很多時候這些問題可以用數學規劃演算法來描述,通常使用Lindo、

Lingo軟體實現)

4、圖論演算法(這類演算法可以分為很多種,包括最短路、網路流、二分圖等演算法,涉

及到圖論的問題可以用這些方法解決,需要認真准備)

5、動態規劃、回溯搜索、分治演算法、分支定界等計算機演算法(這些演算法是演算法設計

中比較常用的方法,很多場合可以用到競賽中)

6、最優化理論的三大非經典演算法:模擬退火法、神經網路、遺傳演算法(這些問題是

用來解決一些較困難的最優化問題的演算法,對於有些問題非常有幫助,但是演算法的實

現比較困難,需慎重使用)

7、網格演算法和窮舉法(網格演算法和窮舉法都是暴力搜索最優點的演算法,在很多競賽

題中有應用,當重點討論模型本身而輕視演算法的時候,可以使用這種暴力方案,最好

使用一些高級語言作為編程工具)

8、一些連續離散化方法(很多問題都是實際來的,數據可以是連續的,而計算機只

認的是離散的數據,因此將其離散化後進行差分代替微分、求和代替積分等思想是非

常重要的)

9、數值分析演算法(如果在比賽中採用高級語言進行編程的話,那一些數值分析中常

用的演算法比如方程組求解、矩陣運算、函數積分等演算法就需要額外編寫庫函數進行調

用)

10、圖象處理演算法(賽題中有一類問題與圖形有關,即使與圖形無關,論文中也應該

要不乏圖片的,這些圖形如何展示以及如何處理就是需要解決的問題,通常使用Matlab

熱點內容
電腦哪些配置功耗高 發布:2024-11-20 13:21:28 瀏覽:352
加密軟體安裝 發布:2024-11-20 13:21:16 瀏覽:176
android藍牙播放 發布:2024-11-20 13:11:54 瀏覽:237
網易我的世界domcer伺服器激活碼 發布:2024-11-20 12:58:35 瀏覽:467
linux版本歷史 發布:2024-11-20 12:41:12 瀏覽:947
win10安裝linux雙系統 發布:2024-11-20 12:39:53 瀏覽:46
我的世界求伺服器ip 發布:2024-11-20 12:27:22 瀏覽:360
序列匹配的演算法 發布:2024-11-20 12:23:27 瀏覽:190
電腦版如何加入手機版伺服器 發布:2024-11-20 12:22:53 瀏覽:62
源碼超 發布:2024-11-20 12:22:49 瀏覽:630