SDLinux驅動
❶ linux下用demsg命令如何查看sd卡驅動
去下DiskInternalsLinuxReader這個工具吧/linux-reader地址在此
❷ linux 驅動設備名在哪個文件夾下
設備驅動名一般都在/dev目錄下。一般常用的設備的設備文件名如下:
/dev/hd[a-t]:IDE設備
/dev/sd[a-z]:SCSI設備
/dev/fd[0-7]:標准軟碟機
/dev/md[0-31]:軟raid設備
/dev/loop[0-7]:本地回環設備
/dev/ram[0-15]:內存
/dev/null:無限數據接收設備,相當於黑洞
/dev/zero:無限零資源
/dev/tty[0-63]:虛擬終端
/dev/ttyS[0-3]:串口
/dev/lp[0-3]:並口/dev/console:控制台
/dev/fb[0-31]:framebuffer
❸ linux下應用層怎麼調用SD卡驅動介面
一般的驅動程序是不允許應用程序調用的,只有當驅動程序留出這種供外界訪問的介面才行,這種介面一般包括read,write,open,ioctl等介面,如果驅動中預留出了這些介面,就可以在應用程序中調用,比如fd=open(設備,參數);或者fd=ioctl(設備,參數);,這樣就會調用到這個設備驅動中的open或者ioctl函數。所以一般如果想再應用程序中調試某個驅動程序,常見的方法就是自己建立一個驅動模塊,這個模塊中預留出對外介面,比如ioctl。然後在你新建的這個驅動模塊中完成ioctl函數,如下:
int device_ioctl(fd,argv) {
/* your function; */
}
static struct file_operations device = {
.ioctl = device_ioctl //預留外部介面
};
應用程序如下:
ioctl(device,argv);
上面這句就可以完成你的模塊中ioctl中的功能。
❹ linux平台下大容量存儲設備的gadget驅動程序直接操縱sd卡如何實現
一般來說不插入卡的情況下不會在我的電腦中顯示相應的圖標,插上卡以後會顯示相應卡的種類圖標,你可以到Dell的網站下載讀卡器驅動程序。
http://support.ap.dell.com/support/downloads/index.aspx?c=cn&l=zh
如果正確安裝驅動程序還是插入沒有反應,有可能是接觸不良,因為筆記本電腦是多功能讀卡器,可以插入多種卡,確定你的存儲卡是筆記本支持的,再重新插入嘗試。
是否正確安裝了讀卡器的驅動程序可以到Windows的設備管理器中查看。
❺ Linux的底層驅動放在哪個位置
設備驅動名一般都在/dev目錄下。一般常用的設備的設備文件名如下: /dev/hd[a-t]:IDE設備 /dev/sd[a-z]:SCSI設備 /dev/fd[0-7]:標准軟碟機 /dev/md[0-31]:軟raid設備 /dev/loop[0-7]:本地回環設備 /dev/ram[0-15]
❻ 解釋一下linux驅動程序結構框架及工作原理
一、Linux device driver 的概念
系統調用是操作系統內核和應用程序之間的介面,設備驅動程序是操作系統內核和機器硬體之間的介面。設備驅動程序為應用程序屏蔽了硬體的細節,這樣在應用程序看來,硬體設備只是一個設備文件,應用程序可以象操作普通文件一樣對硬體設備進行操作。設備驅動程序是內核的一部分,它完成以下的功能:
1、對設備初始化和釋放;
2、把數據從內核傳送到硬體和從硬體讀取數據;
3、讀取應用程序傳送給設備文件的數據和回送應用程序請求的數據;
4、檢測和處理設備出現的錯誤。
在Linux操作系統下有三類主要的設備文件類型,一是字元設備,二是塊設備,三是網路設備。字元設備和塊設備的主要區別是:在對字元設備發出讀/寫請求時,實際的硬體I/O一般就緊接著發生了,塊設備則不然,它利用一塊系統內存作緩沖區,當用戶進程對設備請求能滿足用戶的要求,就返回請求的數據,如果不能,就調用請求函數來進行實際的I/O操作。塊設備是主要針對磁碟等慢速設備設計的,以免耗費過多的CPU時間來等待。
已經提到,用戶進程是通過設備文件來與實際的硬體打交道。每個設備文件都都有其文件屬性(c/b),表示是字元設備還是塊設備?另外每個文件都有兩個設備號,第一個是主設備號,標識驅動程序,第二個是從設備號,標識使用同一個設備驅動程序的不同的硬體設備,比如有兩個軟盤,就可以用從設備號來區分他們。設備文件的的主設備號必須與設備驅動程序在登記時申請的主設備號一致,否則用戶進程將無法訪問到驅動程序。
最後必須提到的是,在用戶進程調用驅動程序時,系統進入核心態,這時不再是搶先式調度。也就是說,系統必須在你的驅動程序的子函數返回後才能進行其他的工作。如果你的驅動程序陷入死循環,不幸的是你只有重新啟動機器了,然後就是漫長的fsck。
二、實例剖析
我們來寫一個最簡單的字元設備驅動程序。雖然它什麼也不做,但是通過它可以了解Linux的設備驅動程序的工作原理。把下面的C代碼輸入機器,你就會獲得一個真正的設備驅動程序。
由於用戶進程是通過設備文件同硬體打交道,對設備文件的操作方式不外乎就是一些系統調用,如 open,read,write,close…, 注意,不是fopen, fread,但是如何把系統調用和驅動程序關聯起來呢?這需要了解一個非常關鍵的數據結構:
STruct file_operatiONs {
int (*seek) (struct inode * ,struct file *, off_t ,int);
int (*read) (struct inode * ,struct file *, char ,int);
int (*write) (struct inode * ,struct file *, off_t ,int);
int (*readdir) (struct inode * ,struct file *, struct dirent * ,int);
int (*select) (struct inode * ,struct file *, int ,select_table *);
int (*ioctl) (struct inode * ,struct file *, unsined int ,unsigned long);
int (*mmap) (struct inode * ,struct file *, struct vm_area_struct *);
int (*open) (struct inode * ,struct file *);
int (*release) (struct inode * ,struct file *);
int (*fsync) (struct inode * ,struct file *);
int (*fasync) (struct inode * ,struct file *,int);
int (*check_media_change) (struct inode * ,struct file *);
int (*revalidate) (dev_t dev);
}
這個結構的每一個成員的名字都對應著一個系統調用。用戶進程利用系統調用在對設備文件進行諸如read/write操作時,系統調用通過設備文件的主設備號找到相應的設備驅動程序,然後讀取這個數據結構相應的函數指針,接著把控制權交給該函數。這是linux的設備驅動程序工作的基本原理。既然是這樣,則編寫設備驅動程序的主要工作就是編寫子函數,並填充file_operations的各個域。
下面就開始寫子程序。
#include <linux/types.h> 基本的類型定義
#include <linux/fs.h> 文件系統使用相關的頭文件
#include <linux/mm.h>
#include <linux/errno.h>
#include <asm/segment.h>
unsigned int test_major = 0;
static int read_test(struct inode *inode,struct file *file,char *buf,int count)
{
int left; 用戶空間和內核空間
if (verify_area(VERIFY_WRITE,buf,count) == -EFAULT )
return -EFAULT;
for(left = count ; left > 0 ; left--)
{
__put_user(1,buf,1);
buf++;
}
return count;
}
這個函數是為read調用准備的。當調用read時,read_test()被調用,它把用戶的緩沖區全部寫1。buf 是read調用的一個參數。它是用戶進程空間的一個地址。但是在read_test被調用時,系統進入核心態。所以不能使用buf這個地址,必須用__put_user(),這是kernel提供的一個函數,用於向用戶傳送數據。另外還有很多類似功能的函數。請參考,在向用戶空間拷貝數據之前,必須驗證buf是否可用。這就用到函數verify_area。為了驗證BUF是否可以用。
static int write_test(struct inode *inode,struct file *file,const char *buf,int count)
{
return count;
}
static int open_test(struct inode *inode,struct file *file )
{
MOD_INC_USE_COUNT; 模塊計數加以,表示當前內核有個設備載入內核當中去
return 0;
}
static void release_test(struct inode *inode,struct file *file )
{
MOD_DEC_USE_COUNT;
}
這幾個函數都是空操作。實際調用發生時什麼也不做,他們僅僅為下面的結構提供函數指針。
struct file_operations test_fops = {?
read_test,
write_test,
open_test,
release_test,
};
設備驅動程序的主體可以說是寫好了。現在要把驅動程序嵌入內核。驅動程序可以按照兩種方式編譯。一種是編譯進kernel,另一種是編譯成模塊(moles),如果編譯進內核的話,會增加內核的大小,還要改動內核的源文件,而且不能動態的卸載,不利於調試,所以推薦使用模塊方式。
int init_mole(void)
{
int result;
result = register_chrdev(0, "test", &test_fops); 對設備操作的整個介面
if (result < 0) {
printk(KERN_INFO "test: can't get major number\n");
return result;
}
if (test_major == 0) test_major = result; /* dynamic */
return 0;
}
在用insmod命令將編譯好的模塊調入內存時,init_mole 函數被調用。在這里,init_mole只做了一件事,就是向系統的字元設備表登記了一個字元設備。register_chrdev需要三個參數,參數一是希望獲得的設備號,如果是零的話,系統將選擇一個沒有被佔用的設備號返回。參數二是設備文件名,參數三用來登記驅動程序實際執行操作的函數的指針。
如果登記成功,返回設備的主設備號,不成功,返回一個負值。
void cleanup_mole(void)
{
unregister_chrdev(test_major,"test");
}
在用rmmod卸載模塊時,cleanup_mole函數被調用,它釋放字元設備test在系統字元設備表中佔有的表項。
一個極其簡單的字元設備可以說寫好了,文件名就叫test.c吧。
下面編譯 :
$ gcc -O2 -DMODULE -D__KERNEL__ -c test.c –c表示輸出制定名,自動生成.o文件
得到文件test.o就是一個設備驅動程序。
如果設備驅動程序有多個文件,把每個文件按上面的命令行編譯,然後
ld ?-r ?file1.o ?file2.o ?-o ?molename。
驅動程序已經編譯好了,現在把它安裝到系統中去。
$ insmod ?–f ?test.o
如果安裝成功,在/proc/devices文件中就可以看到設備test,並可以看到它的主設備號。要卸載的話,運行 :
$ rmmod test
下一步要創建設備文件。
mknod /dev/test c major minor
c 是指字元設備,major是主設備號,就是在/proc/devices里看到的。
用shell命令
$ cat /proc/devices
就可以獲得主設備號,可以把上面的命令行加入你的shell script中去。
minor是從設備號,設置成0就可以了。
我們現在可以通過設備文件來訪問我們的驅動程序。寫一個小小的測試程序。
#include <stdio.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
main()
{
int testdev;
int i;
char buf[10];
testdev = open("/dev/test",O_RDWR);
if ( testdev == -1 )
{
printf("Cann't open file \n");
exit(0);
}
read(testdev,buf,10);
for (i = 0; i < 10;i++)
printf("%d\n",buf[i]);
close(testdev);
}
編譯運行,看看是不是列印出全1
以上只是一個簡單的演示。真正實用的驅動程序要復雜的多,要處理如中斷,DMA,I/O port等問題。這些才是真正的難點。上述給出了一個簡單的字元設備驅動編寫的框架和原理,更為復雜的編寫需要去認真研究LINUX內核的運行機制和具體的設備運行的機制等等。希望大家好好掌握LINUX設備驅動程序編寫的方法。
❼ 為什麼SD卡在Linux下/dev下的設備名叫mmcblk0p1
SD/MMC 卡的設備構造差不多,MMC 應該是 SD 的前身,不過 MMC 當時的設計比 SD 小一半。
所以,SD/MMC 的驅動通用,進一步的,Linux 的設備節點就延續了 MMC 的這個名字,後面的 blk 是塊設備這個英文的簡寫, mmcblk 也就是「 mmc/sd 塊設備」,0 就是這個 mmc/sd 設備的順序編號,p1 就是第一個分區。
mmc卡與sd卡的區別:
1、mmc卡和sd卡的長寬是一樣的,SD卡略厚。
2、SD卡的觸點比MMC卡多一個,是用於數字版權保護(DRM)的。
3、SD卡的側邊比MMC卡多一個防寫的開關。
(7)SDLinux驅動擴展閱讀:
SD模式
驅動模式
SD卡有兩種驅動模式:SPI模式與SDIO模式。它們所使用的介面信號是不同的。在SPI模式下,只會用到SD卡的4根信號線,即CS、DI、SCLK與DO(分別是SD卡的片選、數據輸入、時鍾與數據輸出)。
傳輸模式
SD卡共支持三種傳輸模式:SPI模式(獨立序列輸入和序列輸出),1位SD模式 (獨立指令和數據通道,獨有的傳輸格式), 4位SD模式 (使用額外的針腳以及某些重新設置的針腳。支持四位寬的並行傳輸)。
❽ 求一SD卡驅動(spi傳輸)完整代碼,在linux下可運行的
https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/tree/drivers/mmc
當然是去這里找。
mmc 或者 mfd
❾ linux驅動有哪些
1、將驅動程序文件bcm5700src.rpm復制到一個臨時目錄中,並在此目錄中運行以下命令;
2、運行以下命令切換到驅動目錄中;
3、此目錄中會生成一個名字為bcm5700.spec的文件,運行以下命令對驅動程序進行編譯;
4、運行以下命令切換到RPM目錄中;
5、運行以下命令安裝驅動程序;
6、運行以下命令載入驅動模塊;
7、運行kudzu命令,系統會自動搜索到硬體,進行配置即可。
linux是文件型系統,在linux中,一切皆文件,所有硬體都會在對應的目錄(/dev)下面用相應的文件表示。 文件系統的linux下面,都有對於文件與這些設備關聯的,訪問這些文件就可以訪問實際硬體。 通過訪問文件去操作硬體設備,一切都會簡單很多,不需要再調用各種復雜的介面。 直接讀文件,寫文件就可以向設備發送、接收數據。 按照讀寫存儲數據方式,我們可以把設備分為以下幾種:字元設備(character device)、塊設備(Block device)和網路設備( network interface)。
字元設備(character device):指應用程序採用字元流方式訪問的設備。這些設備節點通常為傳真、虛擬終端和串口數據機、鍵盤之類設備提供流通信服務, 它通常只支持順序訪問。字元設備在實現時,大多不使用緩存器。系統直接從設備讀取/寫入每一個字元。
塊設備(Block device):通常支持隨機存取和定址,並使用緩存器,支持mount文件系統。典型的塊設備有硬碟、SD卡、快閃記憶體等,但此類設備一般不需要自己開發,linux對此提過了大部分的驅動。
網路設備(network interface):是一種特殊設備,它並不存在於/dev下面,主要用於網路數據的收發。網路驅動同塊驅動最大的不同在於網路驅動非同步接受外界數據,而塊驅動只對內核的請求作出響應。
上述設備中,字元設備驅動程序適合於大多數簡單的硬體設備,算是各類驅動程序中最簡單的一類,一般也是從這類驅動開始學習,然後再開始學習採用IIC、SPI等通訊介面的一些設備驅動。可以基於此類驅動調試LKT和LCS系列加密晶元。注意7位IIC地址是0x28。