linux多線程與多進程
❶ linux 下多線程和多進程程序的優缺點,各自適合什麼樣的業務場景
Linux 下多線程和多進程程序的優缺點,各自適合什麼樣的業務場景
IBM有個傢伙做了個測試,發現切換線程context的時候,windows比linux快一倍多。進出最快的鎖(windows2k的 critical section和linux的pthread_mutex),windows比linux的要快五倍左右。當然這並不是說linux不好,而且在經過實際編程之後,綜合來看我覺得linux更適合做high performance server,不過在多線程這個具體的領域內,linux還是稍遜windows一點。這應該是情有可原的,畢竟unix家族都是從多進程過來的,而 windows從頭就是多線程的。
如果是UNIX/linux環境,採用多線程沒必要。
多線程比多進程性能高?誤導!
應該說,多線程比多進程成本低,但性能更低。
在UNIX環境,多進程調度開銷比多線程調度開銷,沒有顯著區別,就是說,UNIX進程調度效率是很高的。內存消耗方面,二者只差全局數據區,現在內存都很便宜,伺服器內存動輒若干G,根本不是問題。
多進程是立體交通系統,雖然造價高,上坡下坡多耗點油,但是不堵車。
多線程是平面交通系統,造價低,但紅綠燈太多,老堵車。
我們現在都開跑車,油(主頻)有的是,不怕上坡下坡,就怕堵車。
高性能交易伺服器中間件,如TUXEDO,都是主張多進程的。實際測試表明,TUXEDO性能和並發效率是非常高的。TUXEDO是貝爾實驗室的,與UNIX同宗,應該是對UNIX理解最為深刻的,他們的意見應該具有很大的參考意義。
❷ 在Linux系統中多進程程序結構和多線程結構那個好
多進程程序結構和多線程程序結構有很大的不同,多線程程序結構相對於多進程程序結構有以下的優勢:
1、方便的通信和數據交換
線程間有方便的通信和數據交換機制。對不同進程來說,它們具有獨立的數據空間,要進行數據的傳遞只能通過通信的方式進行,這種方式不僅費時,而且很不方便。線程則不然,由於同一進程下的線程之間共享數據空間,所以一個線程的數據可以直接為其它線程所用,這不僅快捷,而且方便。
2、更高效的利用CPU
使用多線程可以加快應用程序的響應。這對圖形界面的程序尤其有意義,假如一個操作耗時很長,那麼整個系統都會等它操作,此時程序不會響應鍵盤、滑鼠、菜單等操作,而使用多線程技術,將耗時長的操作置於一個新的線程,就可以避免這種尷尬情況的發生。
同時多線程使多CPU系統更加有效。操作系統會保證當線程數不大於CPU數目時,不同的線程運行於不同的CPU上。
具體可以看ZLG的《嵌入式Linux開發教程》上冊。
❸ linux操作系統多進程和多線程的區別
進程:運行中的程序,-->執行過程稱之為進程。
線程:線程是輕量級的進程,是進程中的一條執行序列,一個進程至少有一條線程。
多線程優點:①無需跨進程邊界;②程序邏輯和控制方式簡單;③所有線程可以直接共享內存和變數;④線程方式消耗的總資源比進程少。
多進程優點:①每個進程相互獨立,不影響主程序的穩定性,子進程崩潰沒關系;②通過增加CPU就可以容易擴充性能;③可以盡量減少線程加鎖/解鎖的影響,極大提高性能。
多線程缺點:①每條線程與主程序共用地址空間,大小受限;②線程之間的同步和加鎖比較麻煩;③一個線程的崩潰可能影響到整個程序的穩定性;④到達一定的線程數之後,即使在增加CPU也無法提高性能。
多進程缺點:①邏輯控制復雜,需要和主程序交互;②需要跨進程邊界,如果有大數據傳輸,不適合;③多進程調度開銷比較大。
Linux系統中多進程和多線程的區別是什麼?
1、多進程中數據共享復雜、同步簡單;而多線程中數據共享簡單、同步復雜。
2、多進程佔用內存多、切換復雜、速度慢、CPU利用率低;而多線程佔用內存少、切換簡單、CPU利用率高。
3、多進程的編程簡單、調試簡單;而多線程的編程復雜、調試復雜。
❹ linux是多線程還是多進程
進程:可執行程序是存儲在磁碟設備上的由代碼和數據按某種格式組織的靜態實體,而進程是可被調度的代碼的動態運行。在Linux系統中,每個進程都有各自的生命周期。在一個進程的生命周期中,都有各自的運行環境以及所需的資源,這些信息都記錄在各自的進程式控制制塊中,以便系統對這些進程進行有效的管理,進程式控制制塊的結構如下圖所示:
每個進程都有各自獨立的虛擬地址空間,空間的大小與所基於的硬體體系結構有關。虛擬空間中各區代表的意義,代碼段存儲指令序列和只讀數據,多個進程實例可共享代碼段。數據段用來存放全局變數和靜態變數。堆區域用於程序的動態內存管理,new或者malloc申請的內存就位於堆中。棧用來存放進程運行過程中的局部變數,函數返回地址,參數和進程上下文環境。
線程:引入進程是為了解決程序並發執行的問題,而引入線程是為了減少程序並發所帶來的時間和空間的開銷,線程是比進程更小的單位,一個進程至少有一個線程,線程是操作系統進行調度的基本單位,線程基本上不佔用系統資源,線程與其他同屬一個進程的線程共享該進程所佔有的資源。
linux是個系統,支持各種服務,服務可以開啟多進程,進程可以開啟多線程
❺ linux中多進程程序和多線程程序的區別
IBM有個傢伙做了個測試,發現切換線程context的時候,windows比linux快一倍多。進出最快的鎖(windows2k的 critical section和linux的pthread_mutex),windows比linux的要快五倍左右。當然這並不是說linux不好,而且在經過實際編程之後,綜合來看我覺得linux更適合做high performance server,不過在多線程這個具體的領域內,linux還是稍遜windows一點。這應該是情有可原的,畢竟unix家族都是從多進程過來的,而 windows從頭就是多線程的。
如果是UNIX/linux環境,採用多線程沒必要。
多線程比多進程性能高?誤導!
應該說,多線程比多進程成本低,但性能更低。
在UNIX環境,多進程調度開銷比多線程調度開銷,沒有顯著區別,就是說,UNIX進程調度效率是很高的。內存消耗方面,二者只差全局數據區,現在內存都很便宜,伺服器內存動輒若干G,根本不是問題。
多進程是立體交通系統,雖然造價高,上坡下坡多耗點油,但是不堵車。
多線程是平面交通系統,造價低,但紅綠燈太多,老堵車。
我們現在都開跑車,油(主頻)有的是,不怕上坡下坡,就怕堵車。
高性能交易伺服器中間件,如TUXEDO,都是主張多進程的。實際測試表明,TUXEDO性能和並發效率是非常高的。TUXEDO是貝爾實驗室的,與UNIX同宗,應該是對UNIX理解最為深刻的,他們的意見應該具有很大的參考意義。
多線程的優點:
無需跨進程邊界;
程序邏輯和控制方式簡單;
所有線程可以直接共享內存和變數等;
線程方式消耗的總資源比進程方式好;
多線程缺點:
每個線程與主程序共用地址空間,受限於2GB地址空間;
線程之間的同步和加鎖控制比較麻煩;
一個線程的崩潰可能影響到整個程序的穩定性;
到達一定的線程數程度後,即使再增加CPU也無法提高性能,例如Windows Server 2003,大約是1500個左右的線程數就快到極限了(線程堆棧設定為1M),如果設定線程堆棧為2M,還達不到1500個線程總數;
線程能夠提高的總性能有限,而且線程多了之後,線程本身的調度也是一個麻煩事兒,需要消耗較多的CPU
多進程優點:
每個進程互相獨立,不影響主程序的穩定性,子進程崩潰沒關系;
通過增加CPU,就可以容易擴充性能;
可以盡量減少線程加鎖/解鎖的影響,極大提高性能,就算是線程運行的模塊演算法效率低也沒關系;
每個子進程都有2GB地址空間和相關資源,總體能夠達到的性能上限非常大
多線程缺點:
邏輯控制復雜,需要和主程序交互;
需要跨進程邊界,如果有大數據量傳送,就不太好,適合小數據量傳送、密集運算
多進程調度開銷比較大;
最好是多進程和多線程結合,即根據實際的需要,每個CPU開啟一個子進程,這個子進程開啟多線程可以為若干同類型的數據進行處理。當然你也可以利用多線程+多CPU+輪詢方式來解決問題……
方法和手段是多樣的,關鍵是自己看起來實現方便有能夠滿足要求,代價也合適。
❻ Linux多進程和線程同步的幾種方式
Linux 線程同步的三種方法
線程的最大特點是資源的共享性,但資源共享中的同步問題是多線程編程的難點。linux下提供了多種方式來處理線程同步,最常用的是互斥鎖、條件變數和信號量。
一、互斥鎖(mutex)
通過鎖機制實現線程間的同步。
初始化鎖。在Linux下,線程的互斥量數據類型是pthread_mutex_t。在使用前,要對它進行初始化。
靜態分配:pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;
動態分配:int pthread_mutex_init(pthread_mutex_t *mutex, const pthread_mutex_attr_t *mutexattr);
加鎖。對共享資源的訪問,要對互斥量進行加鎖,如果互斥量已經上了鎖,調用線程會阻塞,直到互斥量被解鎖。
int pthread_mutex_lock(pthread_mutex *mutex);
int pthread_mutex_trylock(pthread_mutex_t *mutex);
解鎖。在完成了對共享資源的訪問後,要對互斥量進行解鎖。
int pthread_mutex_unlock(pthread_mutex_t *mutex);
銷毀鎖。鎖在是使用完成後,需要進行銷毀以釋放資源。
int pthread_mutex_destroy(pthread_mutex *mutex);
[csharp] view plain
#include <cstdio>
#include <cstdlib>
#include <unistd.h>
#include <pthread.h>
#include "iostream"
using namespace std;
pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;
int tmp;
void* thread(void *arg)
{
cout << "thread id is " << pthread_self() << endl;
pthread_mutex_lock(&mutex);
tmp = 12;
cout << "Now a is " << tmp << endl;
pthread_mutex_unlock(&mutex);
return NULL;
}
int main()
{
pthread_t id;
cout << "main thread id is " << pthread_self() << endl;
tmp = 3;
cout << "In main func tmp = " << tmp << endl;
if (!pthread_create(&id, NULL, thread, NULL))
{
cout << "Create thread success!" << endl;
}
else
{
cout << "Create thread failed!" << endl;
}
pthread_join(id, NULL);
pthread_mutex_destroy(&mutex);
return 0;
}
//編譯:g++ -o thread testthread.cpp -lpthread
二、條件變數(cond)
互斥鎖不同,條件變數是用來等待而不是用來上鎖的。條件變數用來自動阻塞一個線程,直到某特殊情況發生為止。通常條件變數和互斥鎖同時使用。條件變數分為兩部分: 條件和變數。條件本身是由互斥量保護的。線程在改變條件狀態前先要鎖住互斥量。條件變數使我們可以睡眠等待某種條件出現。條件變數是利用線程間共享的全局變數進行同步的一種機制,主要包括兩個動作:一個線程等待"條件變數的條件成立"而掛起;另一個線程使"條件成立"(給出條件成立信號)。條件的檢測是在互斥鎖的保護下進行的。如果一個條件為假,一個線程自動阻塞,並釋放等待狀態改變的互斥鎖。如果另一個線程改變了條件,它發信號給關聯的條件變數,喚醒一個或多個等待它的線程,重新獲得互斥鎖,重新評價條件。如果兩進程共享可讀寫的內存,條件變數可以被用來實現這兩進程間的線程同步。
初始化條件變數。
靜態態初始化,pthread_cond_t cond = PTHREAD_COND_INITIALIER;
動態初始化,int pthread_cond_init(pthread_cond_t *cond, pthread_condattr_t *cond_attr);
等待條件成立。釋放鎖,同時阻塞等待條件變數為真才行。timewait()設置等待時間,仍未signal,返回ETIMEOUT(加鎖保證只有一個線程wait)
int pthread_cond_wait(pthread_cond_t *cond, pthread_mutex_t *mutex);
int pthread_cond_timewait(pthread_cond_t *cond,pthread_mutex *mutex,const timespec *abstime);
激活條件變數。pthread_cond_signal,pthread_cond_broadcast(激活所有等待線程)
int pthread_cond_signal(pthread_cond_t *cond);
int pthread_cond_broadcast(pthread_cond_t *cond); //解除所有線程的阻塞
清除條件變數。無線程等待,否則返回EBUSY
int pthread_cond_destroy(pthread_cond_t *cond);
[cpp] view plain
#include <stdio.h>
#include <pthread.h>
#include "stdlib.h"
#include "unistd.h"
pthread_mutex_t mutex;
pthread_cond_t cond;
void hander(void *arg)
{
free(arg);
(void)pthread_mutex_unlock(&mutex);
}
void *thread1(void *arg)
{
pthread_cleanup_push(hander, &mutex);
while(1)
{
printf("thread1 is running\n");
pthread_mutex_lock(&mutex);
pthread_cond_wait(&cond, &mutex);
printf("thread1 applied the condition\n");
pthread_mutex_unlock(&mutex);
sleep(4);
}
pthread_cleanup_pop(0);
}
void *thread2(void *arg)
{
while(1)
{
printf("thread2 is running\n");
pthread_mutex_lock(&mutex);
pthread_cond_wait(&cond, &mutex);
printf("thread2 applied the condition\n");
pthread_mutex_unlock(&mutex);
sleep(1);
}
}
int main()
{
pthread_t thid1,thid2;
printf("condition variable study!\n");
pthread_mutex_init(&mutex, NULL);
pthread_cond_init(&cond, NULL);
pthread_create(&thid1, NULL, thread1, NULL);
pthread_create(&thid2, NULL, thread2, NULL);
sleep(1);
do
{
pthread_cond_signal(&cond);
}while(1);
sleep(20);
pthread_exit(0);
return 0;
}
[cpp] view plain
#include <pthread.h>
#include <unistd.h>
#include "stdio.h"
#include "stdlib.h"
static pthread_mutex_t mtx = PTHREAD_MUTEX_INITIALIZER;
static pthread_cond_t cond = PTHREAD_COND_INITIALIZER;
struct node
{
int n_number;
struct node *n_next;
}*head = NULL;
static void cleanup_handler(void *arg)
{
printf("Cleanup handler of second thread./n");
free(arg);
(void)pthread_mutex_unlock(&mtx);
}
static void *thread_func(void *arg)
{
struct node *p = NULL;
pthread_cleanup_push(cleanup_handler, p);
while (1)
{
//這個mutex主要是用來保證pthread_cond_wait的並發性
pthread_mutex_lock(&mtx);
while (head == NULL)
{
//這個while要特別說明一下,單個pthread_cond_wait功能很完善,為何
//這里要有一個while (head == NULL)呢?因為pthread_cond_wait里的線
//程可能會被意外喚醒,如果這個時候head != NULL,則不是我們想要的情況。
//這個時候,應該讓線程繼續進入pthread_cond_wait
// pthread_cond_wait會先解除之前的pthread_mutex_lock鎖定的mtx,
//然後阻塞在等待對列里休眠,直到再次被喚醒(大多數情況下是等待的條件成立
//而被喚醒,喚醒後,該進程會先鎖定先pthread_mutex_lock(&mtx);,再讀取資源
//用這個流程是比較清楚的
pthread_cond_wait(&cond, &mtx);
p = head;
head = head->n_next;
printf("Got %d from front of queue/n", p->n_number);
free(p);
}
pthread_mutex_unlock(&mtx); //臨界區數據操作完畢,釋放互斥鎖
}
pthread_cleanup_pop(0);
return 0;
}
int main(void)
{
pthread_t tid;
int i;
struct node *p;
//子線程會一直等待資源,類似生產者和消費者,但是這里的消費者可以是多個消費者,而
//不僅僅支持普通的單個消費者,這個模型雖然簡單,但是很強大
pthread_create(&tid, NULL, thread_func, NULL);
sleep(1);
for (i = 0; i < 10; i++)
{
p = (struct node*)malloc(sizeof(struct node));
p->n_number = i;
pthread_mutex_lock(&mtx); //需要操作head這個臨界資源,先加鎖,
p->n_next = head;
head = p;
pthread_cond_signal(&cond);
pthread_mutex_unlock(&mtx); //解鎖
sleep(1);
}
printf("thread 1 wanna end the line.So cancel thread 2./n");
//關於pthread_cancel,有一點額外的說明,它是從外部終止子線程,子線程會在最近的取消點,退出
//線程,而在我們的代碼里,最近的取消點肯定就是pthread_cond_wait()了。
pthread_cancel(tid);
pthread_join(tid, NULL);
printf("All done -- exiting/n");
return 0;
}
三、信號量(sem)
如同進程一樣,線程也可以通過信號量來實現通信,雖然是輕量級的。信號量函數的名字都以"sem_"打頭。線程使用的基本信號量函數有四個。
信號量初始化。
int sem_init (sem_t *sem , int pshared, unsigned int value);
這是對由sem指定的信號量進行初始化,設置好它的共享選項(linux 只支持為0,即表示它是當前進程的局部信號量),然後給它一個初始值VALUE。
等待信號量。給信號量減1,然後等待直到信號量的值大於0。
int sem_wait(sem_t *sem);
釋放信號量。信號量值加1。並通知其他等待線程。
int sem_post(sem_t *sem);
銷毀信號量。我們用完信號量後都它進行清理。歸還佔有的一切資源。
int sem_destroy(sem_t *sem);
[cpp] view plain
#include <stdlib.h>
#include <stdio.h>
#include <unistd.h>
#include <pthread.h>
#include <semaphore.h>
#include <errno.h>
#define return_if_fail(p) if((p) == 0){printf ("[%s]:func error!/n", __func__);return;}
typedef struct _PrivInfo
{
sem_t s1;
sem_t s2;
time_t end_time;
}PrivInfo;
static void info_init (PrivInfo* thiz);
static void info_destroy (PrivInfo* thiz);
static void* pthread_func_1 (PrivInfo* thiz);
static void* pthread_func_2 (PrivInfo* thiz);
int main (int argc, char** argv)
{
pthread_t pt_1 = 0;
pthread_t pt_2 = 0;
int ret = 0;
PrivInfo* thiz = NULL;
thiz = (PrivInfo* )malloc (sizeof (PrivInfo));
if (thiz == NULL)
{
printf ("[%s]: Failed to malloc priv./n");
return -1;
}
info_init (thiz);
ret = pthread_create (&pt_1, NULL, (void*)pthread_func_1, thiz);
if (ret != 0)
{
perror ("pthread_1_create:");
}
ret = pthread_create (&pt_2, NULL, (void*)pthread_func_2, thiz);
if (ret != 0)
{
perror ("pthread_2_create:");
}
pthread_join (pt_1, NULL);
pthread_join (pt_2, NULL);
info_destroy (thiz);
return 0;
}
static void info_init (PrivInfo* thiz)
{
return_if_fail (thiz != NULL);
thiz->end_time = time(NULL) + 10;
sem_init (&thiz->s1, 0, 1);
sem_init (&thiz->s2, 0, 0);
return;
}
static void info_destroy (PrivInfo* thiz)
{
return_if_fail (thiz != NULL);
sem_destroy (&thiz->s1);
sem_destroy (&thiz->s2);
free (thiz);
thiz = NULL;
return;
}
static void* pthread_func_1 (PrivInfo* thiz)
{
return_if_fail(thiz != NULL);
while (time(NULL) < thiz->end_time)
{
sem_wait (&thiz->s2);
printf ("pthread1: pthread1 get the lock./n");
sem_post (&thiz->s1);
printf ("pthread1: pthread1 unlock/n");
sleep (1);
}
return;
}
static void* pthread_func_2 (PrivInfo* thiz)
{
return_if_fail (thiz != NULL);
while (time (NULL) < thiz->end_time)
{
sem_wait (&thiz->s1);
printf ("pthread2: pthread2 get the unlock./n");
sem_post (&thiz->s2);
printf ("pthread2: pthread2 unlock./n");
sleep (1);
}
return;
}
❼ Linux下多線程和多進程程序的優缺點,各個適合什麼樣的業務場景
多進程比較安全,因為默認情況下不同進程之間的內存是獨立的(如果需要共享內存則需要進行進程間通信)。而多線程下,內存是共享的,這時就比較危險了,你要自己使用鎖、信號量等機制來解決內存塊的同時讀寫和同步等等。如果兩個功能沒有數據需要共享,或只有前後遞進關系,建議使用多進程。如果兩個功能需要同時對一塊數據進行處理(例如需要對資源進行創建和老化刪除),則需要使用多線程,這時可能需要使用鎖等機制來控制線程沖突。
❽ linux裡面,進程與線程到底有什麼本質的區別
線程:是進程中執行的一條路徑,是系統調度的最小單位。
進程:是正在運行的程序,是系統分配資源的最小單位。
線程與進程關系
1.一個進程可以有多個線程,一個線程只能屬於一個進程。
2.同一個進程下的所有線程共享該進程下的所有資源。
3.真正在處理機上運行的是線程,不是進程,線程是進程內的一個執行單元,是進程內的可調度實體。
Linux線程與進程區別
進程:
優點:多進程可以同時利用多個CPU,能夠同時進行多個操作。
缺點:耗費資源(創建一個進程重新開辟內存空間)。
進程不是越多越好,一般進程個數等於cpu個數。
線程:
優點:共享內存,尤其是進行IO操作(網路、磁碟)的時候(IO操作很少用cpu),可以使用多線程執行並發操作。
缺點:搶占資源。
❾ 多線程vs多進程,誰在Linux能更好發揮多核CP
多線程和多進程應該是各有所長吧,它們都能很好的發揮處理器多核性能,對於多進程來說,Linux的進程是輕量級的,進程本身的資源開銷相當小,而且Linux的進程可以互相協作、互相發送消息、互相中斷,還可以共享內存段,編寫多個相互協作的進程也要比編寫多線程更容易,所以在Linux編程中多進程要比多線程更加常用一些。但是多進程之間共享變數不是很容易,它們畢竟是各自獨立的實體,而多線程可以很容易的共享變數(當然前提是搞好線程同步),所以會有一些資料庫伺服器程序用多線程技術,總之就是各有所長,根據編程的需要進行取捨。
❿ Linux進程與線程的區別和聯系
進程中可包含多個線程,最少1個,進程可控制進程內線程的運行暫停及結束,線程可共享進程全局變數,進程與進程是單獨個體,相互不能直接訪問各自線程及全局變數