當前位置:首頁 » 操作系統 » 視覺處理演算法

視覺處理演算法

發布時間: 2022-07-02 11:07:21

A. 市面上有哪些比較不錯的機器視覺演算法

華漢偉業的機器視覺演算法是公認的實力派!華漢偉業的自研演算法優化採用了指令集、並行演算法等技術手段,並且與國際一流演算法開發包Halcon進行對比測試,演算法精度誤差小於10-4,速度與其相當,在國內傳統機器視覺領域,處於第一梯隊。目前國內視覺廠商多數處於應用層開發,使用國外演算法庫進行開發,缺少自己底層演算法開發和優化能力,華漢偉業演算法開發包可以實現國產替代,提升國內在視覺領域的基礎開發能力,目前已經在多個產線實現了落地批量應用,其功能、性能及穩定性得到驗證,並獲得客戶的高度認同。 不妨網路下

B. 機器視覺演算法基本步驟

1、圖像數據解碼
2、圖像特徵提取
3、識別圖像中目標

C. 雙目視覺的匹配演算法是不是有好幾種具體是哪幾種

與普通的圖像模板匹配不同的是,立體匹配是通過在兩幅或多幅存在視點差異、幾何畸變、灰度畸變、雜訊干擾的圖像對之間進行的,不存在任何標准模板進行匹配。立體匹配方法一般包含以下三個問題:(1)基元的選擇,即選擇適當的圖像特徵如點、直線、相位等作為匹配基元;(2)匹配的准則,將關於物理世界的某些固有特徵表示為匹配所必須遵循的若干規則,使匹配結果能真實反映景物的本來面目;(3)演算法結構,通過利用適當的數學方法設計能正確匹配所選擇基元的穩定演算法。

根據匹配基元的不同,立體視覺匹配演算法目前主要分為三大類,即區域匹配、相位匹配和特徵匹配:

基於區域灰度的匹配演算法是把一幅圖像(基準圖)中某一點的灰度鄰域作為模板,在另一幅圖像(待匹配圖)中搜索具有相同(或相似)灰度值分布的對應點鄰域,從而實現兩幅圖像的匹配。這類演算法的性能取決於度量演算法及搜索策略的選擇。另外,也必須考慮匹配窗口大小、形式的選擇,大窗口對於景物中存在的遮擋或圖像不光滑的情況會更多的出現誤匹配,小窗口則不具有足夠的灰度變化信息,不同的窗口形式對匹配信息也會有不同的影響。因此應該合理選取匹配區域的大小和形式來達到較好的匹配結果。

相位匹配是近二十年發展起來的一種匹配演算法,相位作為匹配基元,即認為圖像對中的對應點局部相位是一致的。最常用的相位匹配演算法有相位相關法和相位差——頻率法,雖然該方法是一種性能穩定、具有較強的抗輻射抗透視畸變能力、簡單高效、能得到稠密視差圖的特徵匹配方法。但是,當局部結構存在的假設不成立時,相位匹配演算法因帶通輸出信號的幅度太低而失去有效性,也就是通常提到的相位奇點問題,在相位奇點附近,相位信息對位置和頻率的變化極為敏感,因此用這些像素所確定的相位差異來衡量匹配誤差將導致極不可靠的結果。此外,相位匹配演算法的收斂范圍與帶通濾波器的波長有關,通常要考慮相位卷繞,在用相位差進行視差計算時,由於所採用的相位只是原信號某一帶通條件下的相位,故視差估計只能限制在某一限定范圍之內,隨視差范圍的增大,其精確性會有所下降。

基於特徵的圖像匹配方法是目前最常用的方法之一,由於它能夠將對整個圖像進行的各種分析轉化為對圖像特徵(特徵點、特徵曲線等)的分析的優點,從而大大減小了圖像處理過程的計算量,對灰度變化、圖像變形、噪音污染以及景物遮擋等都有較好的適應能力。

基於特徵的匹配方法是為使匹配過程滿足一定的抗噪能力且減少歧義性問題而提出來的。與基於區域的匹配方法不同,基於特徵的匹配方法是有選擇地匹配能表示景物自身特性的特徵,通過更多地強調空間景物的結構信息來解決匹配歧義性問題。這類方法將匹配的搜索范圍限制在一系列稀疏的特徵上。利用特徵間的距離作為度量手段,具有最小距離的特徵對就是最相近的特徵對,也就是匹配對。特徵間的距離度量有最大最小距離、歐氏距離等。

特徵點匹配演算法嚴格意義上可以分成特徵提取、特徵匹配和消除不良匹配點三步。特徵匹配不直接依賴於灰度,具有較強的抗干擾性。該類方法首先從待匹配的圖像中提取特徵,用相似性度量和一些約束條件確定幾何變換,最後將該變換作用於待匹配圖像。匹配中常用的特徵基元有角點、邊緣、輪廓、直線、顏色、紋理等。同時,特徵匹配演算法也同樣地存在著一些不足,主要表現為:

(l)特徵在圖像中的稀疏性決定了特徵匹配只能得到稀疏的視差場,要獲得密集的視差場必須通過使用插值的過程,插值過程通常較為復雜。

(2)特徵的提取和定位的准確與否直接影響特徵匹配結果的精確度。

(3)由於其應用場合的局限性,特徵匹配往往適用於具有特徵信息顯著的環境中,在缺少顯著主導特徵環境中該方法有很大困難。

總之,特徵匹配基元包含了演算法編程上的靈活性以及令人滿意的統計特性。演算法的許多約束條件均能清楚地應用於數據結構,而數據結構的規則性使得特徵匹配非常適用於硬體設計。例如,基於線段的特徵匹配演算法將場景模型描繪成相互聯結的邊緣線段,而不是區域匹配中的平面模型,因此能很好地處理一些幾何畸變問題,對對比度和明顯的光照變化等相對穩定。特徵匹配由於不直接依賴於灰度,計算量小,比基於區域的匹配演算法速度快的多。且由於邊緣特徵往往出現在視差不連續的區域,特徵匹配較易處理立體視覺匹配中的視差不連續問題。

D. 計算機視覺演算法是做什麼的

通過C/C++或Java任一種編程語言,Python/ perl/shell中任一種腳本語言,實現數據分析和挖掘工具,最終通過演算法實現使用計算機及相關設備對生物視覺的一種模擬。

E. 視覺演算法和圖像演算法的區別

兩者其實差別都不算很大,從專業本身來說,模式識別研發就比如汽車的車牌,你怎麼去識別,圖像演算法主要研究目的就是比如車牌你怎麼讓他更清楚地被你採集後得到有用的信息,還原圖片的原來面目等。都是演算法類的研究,當然演算法也是離不開程序的,如果你對軟體不敢新區,那麼這兩個專業都不是適合你。

F. cv演算法是什麼呀

cv演算法是計算機視覺演算法。是一門研究如何使機器「看」的科學,更進一步的說,就是是指用攝影機和電腦代替人眼對目標進行識別、跟蹤和測量等機器視覺,並進一步做圖形處理,使電腦處理成為更適合人眼觀察或傳送給儀器檢測的圖像。

作為一個科學學科,計算機視覺研究相關的理論和技術,試圖建立能夠從圖像或者多維數據中獲取『信息』的人工智慧系統。這里所 指的信息指Shannon定義的,可以用來幫助做一個「決定」的信息。

定義:

計算機視覺是使用計算機及相關設備對生物視覺的一種模擬。它的主要任務就是通過對採集的圖片或視頻進行處理以獲得相應場景的三維信息,就像人類和許多其他類生物每天所做的那樣。

計算機視覺是一門關於如何運用照相機和計算機來獲取我們所需的,被拍攝對象的數據與信息的學問。形象地說,就是給計算機安裝上眼睛(照相機)和大腦(演算法),讓計算機能夠感知環境。

我們中國人的成語"眼見為實"和西方人常說的"One picture is worth ten thousand words"表達了視覺對人類的重要性。不難想像,具有視覺的機器的應用前景能有多麼地寬廣。

G. 視覺追蹤的典型演算法

(1)基於區域的跟蹤演算法
基於區域的跟蹤演算法基本思想是:將目標初始所在區域的圖像塊作為目標模板,將目標模板與候選圖像中所有可能的位置進行相關匹配,匹配度最高的地方即為目標所在的位置。最常用的相關匹配准則是差的平方和准則,(Sum of Square Difference,SSD)。
起初,基於區域的跟蹤演算法中所用到的目標模板是固定的,如 Lucas 等人提出 Lucas-Kanade 方法,該方法利用灰度圖像的空間梯度信息尋找最佳匹配區域,確定目標位置。之後,更多的學者針對基於區域方法的缺點進行了不同的改進,如:Jepson 等人提出的基於紋理特徵的自適應目標外觀模型[18],該模型可以較好的解決目標遮擋的問題,且在跟蹤的過程中採用在線 EM 演算法對目標模型進行更新;Comaniciu 等人[19]提出了基於核函數的概率密度估計的視頻目標跟蹤演算法,該方法採用核直方圖表示目標,通過 Bhattacharya 系數計算目標模板與候選區域的相似度,通過均值漂移(MeanShift)演算法快速定位目標位置。
基於區域的目標跟蹤演算法採用了目標的全局信息,比如灰度信息、紋理特徵等,因此具有較高的可信度,即使目標發生較小的形變也不影響跟蹤效果,但是當目標發生較嚴重的遮擋時,很容易造成跟蹤失敗。
(2)基於特徵的跟蹤方法
基於特徵的目標跟蹤演算法通常是利用目標的一些顯著特徵表示目標,並通過特徵匹配在圖像序列中跟蹤目標。該類演算法不考慮目標的整體特徵,因此當目標被部分遮擋時,仍然可以利用另一部分可見特徵完成跟蹤任務,但是該演算法不能有效處理全遮擋、重疊等問題。
基於特徵的跟蹤方法一般包括特徵提取和特徵匹配兩個過程:
a) 特徵提取
所謂特徵提取是指從目標所在圖像區域中提取合適的描繪性特徵。這些特徵不僅應該較好地區分目標和背景,而且應對目標尺度伸縮、目標形狀變化、目標遮擋等情況具有魯棒性。常用的目標特徵包括顏色特徵、灰度特徵、紋理特徵、輪廓、光流特徵、角點特徵等。D.G. Lowe 提出 SIFT(Scale Invariant Feature Transform)演算法[20]是圖像特徵中效果較好的一種方法,該特徵對旋轉、尺度縮放、亮度變化具有不變性,對視角變化、仿射變換、雜訊也具有一定的穩定性。
b) 特徵匹配
特徵匹配就是採用一定的方式計算衡量候選區域與目標區域的相似性,並根據相似性確定目標位置、實現目標跟蹤。在計算機視覺領域中,常用的相似性度量准則包括加權距離、Bhattacharyya 系數、歐式距離、Hausdorff 距離等。其中,Bhattacharyya 系數和歐式距離最為常用。
Tissainayagam 等人提出了一種基於點特徵的目標跟蹤演算法[21]。該演算法首先在多個尺度空間中尋找局部曲率最大的角點作為關鍵點,然後利用提出的MHT-IMM 演算法跟蹤這些關鍵點。這種跟蹤演算法適用於具有簡單幾何形狀的目標,對於難以提取穩定角點的復雜目標,則跟蹤效果較差。
Zhu 等人提出的基於邊緣特徵的目標跟蹤演算法[22],首先將參考圖像劃分為多個子區域,並將每個子區域的邊緣點均值作為目標的特徵點,然後利用類似光流的方法進行特徵點匹配,從而實現目標跟蹤。
(3)基於輪廓的跟蹤方法
基於輪廓的目標跟蹤方法需要在視頻第一幀中指定目標輪廓的位置,之後由微分方程遞歸求解,直到輪廓收斂到能量函數的局部極小值,其中,能量函數通常與圖像特徵和輪廓光滑度有關。與基於區域的跟蹤方法相比,基於輪廓的跟蹤方法的計算復雜度小,對目標的部分遮擋魯棒。但這種方法在跟蹤開始時需要初始化目標輪廓,因此對初始位置比較敏感,跟蹤精度也被限制在輪廓級。
Kass 等人[23]於 1987 年提出的活動輪廓模型(Active Contour Models,Snake),通過包括圖像力、內部力和外部約束力在內的三種力的共同作用控制輪廓的運動。內部力主要對輪廓進行局部的光滑性約束,圖像力則將曲線推向圖像的邊緣,而外部力可以由用戶指定,主要使輪廓向期望的局部極小值運動,。
Paragios 等人[24]提出了一種用水平集方法表示目標輪廓的目標檢測與跟蹤演算法,該方法首先通過幀差法得到目標邊緣,然後通過概率邊緣檢測運算元得到目標的運動邊緣,通過將目標輪廓向目標運動邊緣演化實現目標跟蹤。
(4)基於模型的跟蹤方法[25]
在實際應用中,我們需要跟蹤的往往是一些特定的我們事先具有認識的目標,因此,基於模型的跟蹤方法首先根據自己的先驗知識離線的建立該目標的 3D 或2D 幾何模型,然後,通過匹配待選區域模型與目標模型實現目標跟蹤,進而在跟蹤過程中,根據場景中圖像的特徵,確定運動目標的各個尺寸參數、姿態參數以及運動參數。
Shu Wang 等人提出一種基於超像素的跟蹤方法[26],該方法在超像素基礎上建立目標的外觀模板,之後通過計算目標和背景的置信圖確定目標的位置,在這個過程中,該方法不斷通過分割和顏色聚類防止目標的模板漂移。
(5)基於檢測的跟蹤演算法
基於檢測的跟蹤演算法越來越流行。一般情況下,基於檢測的跟蹤演算法都採用一點學習方式產生特定目標的檢測器,即只用第一幀中人工標記的樣本信息訓練檢測器。這類演算法將跟蹤問題簡化為簡單的將背景和目標分離的分類問題,因此這類演算法的速度快且效果理想。這類演算法為了適應目標外表的變化,一般都會採用在線學習方式進行自更新,即根據自身的跟蹤結果對檢測器進行更新。

H. 計算機視覺領域主流的演算法和方向有哪些

人工智慧是當下很火熱的話題,其與大數據的完美結合應用於多個場景,極大的方便了人類的生活。而人工智慧又包含深度學習和機器學習兩方面的內容。深度學習又以計算機視覺和自然語言處理兩個方向發展的最好,最火熱。大家對於自然語言處理的接觸可能不是很多,但是說起計算機視覺,一定能夠馬上明白,因為我們每天接觸的刷臉支付等手段就會和計算機視覺掛鉤。可以說計算機視覺的應用最為廣泛。

目標跟蹤,就是在某種場景下跟蹤特定對象的過程,在無人駕駛領域中有很重要的應用。目前較為流行的目標跟蹤演算法是基於堆疊自動編碼器的DLT。語義分割,則是將圖像分為像素組,再進行標記和分類。目前的主流演算法都使用完全卷積網路的框架。實例分割,是指將不同類型的實例分類,比如用4種不同顏色來標記4隻貓。目前用於實例分割的主流演算法是Mask R-CNN。

I. 機器視覺演算法與應用的介紹

《機器視覺演算法與應用》是2008年清華大學出版社出版的圖書,作者是(德)斯蒂格。該書對機器視覺處理系統和各種處理演算法進行了詳盡解述。

J. 機器視覺是一種演算法嗎

機器視覺是人工智慧正在快速發展的一個分支。簡單說來,機器視覺就是用機器代替人眼來做測量和判斷。機器視覺系統是通過機器視覺產品(即圖像攝取裝置,分CMOS和CCD兩種)將被攝取目標轉換成圖像信號,傳送給專用的圖像處理系統,得到被攝目標的形態信息,根據像素分布和亮度、顏色等信息,轉變成數字化信號;圖像系統對這些信號進行各種運算來抽取目標的特徵,進而根據判別的結果來控制現場的設備動作。

說白了,不是一種演算法,是一種技術或者說一個工具
--------眾合航迅科技有限公司 鄧振輝為您解答

熱點內容
微信伺服器IP跳轉 發布:2025-01-27 12:26:54 瀏覽:73
oracle自動備份腳本linux 發布:2025-01-27 12:21:40 瀏覽:936
pop伺服器密碼怎麼填 發布:2025-01-27 12:20:02 瀏覽:968
oraclesqlnumber 發布:2025-01-27 12:04:22 瀏覽:849
如何看三才配置數理暗示力 發布:2025-01-27 12:04:15 瀏覽:811
我的世界離線2b2t的伺服器 發布:2025-01-27 11:51:25 瀏覽:144
網站被異常篡改訪問有風險 發布:2025-01-27 11:50:01 瀏覽:431
光遇國際服腳本全部圖 發布:2025-01-27 11:47:40 瀏覽:139
ios資源加密 發布:2025-01-27 11:36:33 瀏覽:816
c語言居右 發布:2025-01-27 11:36:32 瀏覽:609