資料庫處理並發
mysql的最大連接數默認是100, 這個數值對於並發連接很多的資料庫應用是遠遠不夠的,當連接請求大於默認連接數後,就會出現無法連接資料庫的錯誤,因此我們需要把它適當調大一些。 調節方法為: 1.linux伺服器中:改my中國f中的值就行了 2.Windows伺服器中(我用的): 在文件「my.ini」中找到段 [mysqld],在其中添加一行 max_connections=200 ### 200可以更改為想設置成的值. 然後重啟"mysql"服務。 /mysqladmin所在路徑/mysqladmin -uroot -p variables 輸入root資料庫賬號的密碼後可看到 | max_connections | 1000 | 其他需注意的: 在編程時,由於用mysql語句調用資料庫時,在每次之執行語句前,會做一個臨時的變數用來打開資料庫,所以你在使用mysql語句的時候,記得在每次調用完mysql之後就關閉mysql臨時變數。 另外對於訪問量大的,可以考慮直接寫到文本中,根據預測的訪問量,先定義假若是100個文件文件名依次為1.txt,2.txt...100.txt。需要的時候,再對所有文本文件中的數據進行分析,再導入資料庫
② 資料庫的並發操作分帶來哪些問題
根據之前的dong網友做的vs示意圖
並結合參考,個人認為,不可重復讀和幻讀,應該是層次上的不同:
⑴.幻讀:對象(實體)的數量不同
⑵.不可重復讀:對象(實體)的值(屬性)不同
1.更新丟失
幻讀
參考:
網頁鏈接
網頁鏈接
③ 資料庫如何實現並發控制
唔,並發污染就是數據在並發使用的時候,出現的臟讀,臟寫,虛讀等等了。。。
並發性控制就是用來防止上述情況的。比如防止臟寫的並發控制應該做到在寫入數據時檢查一下要更新的數據,資料庫中的原始數據是否和程序中准備更新的原始數據一一符合,然後進行更新。防止你准備更新的記錄被別人更新了,而你又重復更新了別人更新過的記錄。。。
④ 資料庫原理並發控制問題
並發(concurrent)和並行(parallel)這兩個概念,在資料庫系統的資料中經常出現,然而有關它們的定義和區別卻沒有明確的說法。這里,我們根據這兩個概念在資料中的使用,對它們的不同做一個說明。
並發是指多個任務的同時執行,任務與任務之間沒有聯系。由於資料庫系統要同時為許多用戶提供服務,每個用戶都可以發出自己的訪問請求,一個請求就是一個任務。在一個時間點,資料庫系統可能要同時處理多個任務。因此,資料庫系統一定要具備並發處理能力。
並行是指將一個任務劃分為多個子任務,這些子任務同時執行。在所有子任務處理完成後,將它們的結果進行合並,就得到該任務的最終處理結果。在資料庫系統中,如果要執行一個大的數據查詢,為了提高速度、降低響應時間,用戶可以通過系統配置或者在命令中,要求對該大數據量查詢進行並行處理,將該查詢劃分成多個子查詢。這些子查詢同時執行,最後系統將所有子查詢的處理結果進行合並,作為該查詢處理的最終結果。現有的大型資料庫系統都支持並行處理。
需要說明的是,並發和並行與資料庫系統採用多進程還是多線程體系結構無關。對採用多進程結構的資料庫系統,所有的任務、子任務通過進程來處理;而對採用多線程結構的資料庫系統,這些工作是由線程來完成。
資料庫系統的並發控制,涉及到任務的調度、數據的一致性及可靠性等,而資料庫系統的並行處理,主要涉及任務的處理速度、系統性能等方面。
⑤ 如何處理資料庫並發問題
想要知道如何處理數據並發,自然需要先了解數據並發。
什麼是數據並發操作呢?
就是同一時間內,不同的線程同時對一條數據進行讀寫操作。
在互聯網時代,一個系統常常有很多人在使用,因此就可能出現高並發的現象,也就是不同的用戶同時對一條數據進行操作,如果沒有有效的處理,自然就會出現數據的異常。而最常見的一種數據並發的場景就是電商中的秒殺,成千上萬個用戶對在極端的時間內,搶購一個商品。針對這種場景,商品的庫存就是一個需要控制的數據,而多個用戶對在同一時間對庫存進行重寫,一個不小心就可能出現超賣的情況。
針對這種情況,我們如何有效的處理數據並發呢?
第一種方案、資料庫鎖
從鎖的基本屬性來說,可以分為兩種:一種是共享鎖(S),一種是排它鎖(X)。在MySQL的資料庫中,是有四種隔離級別的,會在讀寫的時候,自動的使用這兩種鎖,防止數據出現混亂。
這四種隔離級別分別是:
讀未提交(Read Uncommitted)
讀提交(Read Committed)
可重復讀(Repeated Read)
串列化(Serializable)
當然,不同的隔離級別,效率也是不同的,對於數據的一致性保證也就有不同的結果。而這些可能出現的又有哪些呢?
臟讀(dirty read)
當事務與事務之間沒有任何隔離的時候,就可能會出現臟讀。例如:商家想看看所有的訂單有哪些,這時,用戶A提交了一個訂單,但事務還沒提交,商家卻看到了這個訂單。而這時就會出現一種問題,當商家去操作這個訂單時,可能用戶A的訂單由於部分問題,導致數據回滾,事務沒有提交,這時商家的操作就會失去目標。
不可重復讀(unrepeatable read)
一個事務中,兩次讀操作出來的同一條數據值不同,就是不可重復讀。
例如:我們有一個事務A,需要去查詢一下商品庫存,然後做扣減,這時,事務B操作了這個商品,扣減了一部分庫存,當事務A再次去查詢商品庫存的時候,發現這一次的結果和上次不同了,這就是不可重復讀。
幻讀(phantom problem)
一個事務中,兩次讀操作出來的結果集不同,就是幻讀。
例如:一個事務A,去查詢現在已經支付的訂單有哪些,得到了一個結果集。這時,事務B新提交了一個訂單,當事務A再次去查詢時,就會出現,兩次得到的結果集不同的情況,也就是幻讀了。
那針對這些結果,不同的隔離級別可以干什麼呢?
「讀未提(Read Uncommitted)」能預防啥?啥都預防不了。
「讀提交(Read Committed)」能預防啥?使用「快照讀(Snapshot Read)」方式,避免「臟讀」,但是可能出現「不可重復讀」和「幻讀」。
「可重復讀(Repeated Red)」能預防啥?使用「快照讀(Snapshot Read)」方式,鎖住被讀取記錄,避免出現「臟讀」、「不可重復讀」,但是可能出現「幻讀」。
「串列化(Serializable)」能預防啥?有效避免「臟讀」、「不可重復讀」、「幻讀」,不過運行效率奇差。
好了,鎖說完了,但是,我們的資料庫鎖,並不能有效的解決並發的問題,只是盡可能保證數據的一致性,當並發量特別大時,資料庫還是容易扛不住。那解決數據並發的另一個手段就是,盡可能的提高處理的速度。
因為數據的IO要提升難度比較大,那麼通過其他的方式,對數據進行處理,減少資料庫的IO,就是提高並發能力的有效手段了。
最有效的一種方式就是:緩存
想要減少並發出現的概率,那麼讀寫的效率越高,讀寫的執行時間越短,自然數據並發的可能性就變小了,並發性能也有提高了。
還是用剛才的秒殺舉例,我們為的就是保證庫存的數據不出錯,賣出一個商品,減一個庫存,那麼,我們就可以將庫存放在內存中進行處理。這樣,就能夠保證庫存有序的及時扣減,並且不出現問題。這樣,我們的資料庫的寫操作也變少了,執行效率也就大大提高了。
當然,常用的分布式緩存方式有:Redis和Memcache,Redis可以持久化到硬碟,而Memcache不行,應該怎麼選擇,就看具體的使用場景了。
當然,緩存畢竟使用的范圍有限,很多的數據我們還是必須持久化到硬碟中,那我們就需要提高資料庫的IO能力,這樣避免一個線程執行時間太長,造成線程的阻塞。
那麼,讀寫分離就是另一種有效的方式了
當我們的寫成為了瓶頸的時候,讀寫分離就是一種可以選擇的方式了。
我們的讀庫就只需要執行讀,寫庫就只需要執行寫,把讀的壓力從主庫中分離出去,讓主庫的資源只是用來保證寫的效率,從而提高寫操作的性能。
⑥ 資料庫高並發寫入,怎麼降低資料庫的壓力
主要通過架構設計來減少高並發對資料庫的壓力;
比如 在資料庫和應用程序之間,增加 DAL層,通過代理,連接池等,保證資料庫與業務程序由一定的緩沖和關系梳理;
在資料庫前面,加一個緩存層,讓大部分數據訪問,都直接在緩存層獲取數據,不用訪問到後端的MySQL資料庫;
⑦ 資料庫並發控制中使用什麼可以獲得更高的並發度
資料庫並發控制中使用可以獲得更高的並發度好像沒有,只有鎖這種方式。可以用樂觀鎖。當發生死鎖時,可以使用等待圖法,消除死鎖。
並發控制保證事務4個特性,acid:A:原子性(Atomicity) 事務是資料庫的邏輯工作單位,事務中包括的諸操作要麼全做,要麼全不做。C:一致性(Consistency) 事務執行的結果必須是使資料庫從一個一致性狀態變到另一個一致性狀態。
資料庫管理系統中的並發控制:
資料庫管理系統(DBMS)中的並發控制的任務是確保在多個事務同時存取資料庫中同一數據時不破壞事務的隔離性和統一性以及資料庫的統一性。
資料庫並發控制現有兩處火車票售票點,同時讀取某一趟列車車票資料庫中車票余額為X。兩處售票點同時賣出一張車票,同時修改余額為X -1寫回資料庫,這樣就造成了實際賣出兩張火車票而資料庫中的卻記錄只少了一張。
資料庫並發控制產生這種情況的原因是因為兩個事務讀入同一數據並同時修改,其中一個事務提交的結果破壞了另一個事務提交的結果,導致其數據的修改被丟失,破壞了事務的隔離性。並發控制要解決的就是這類問題。
⑧ 資料庫有幾十萬條數據,求高手指點如何處理並發
如果有20萬條數據,5分鍾內處理完成,那麼每秒最少要處理600多條數據。你這個瓶頸在三個方面:
本地資料庫讀寫,你這個需要資料庫表不人導致死鎖的,這個可以通過堆硬體性能(IO和CPU主頻),資料庫做好對應的索引提升查詢速度,返回的結果先緩存到redis里,然後再寫回去,應該是可以解決的
提交速度,每秒提交600條,這個靠單線程是肯定解決不了的,這需要多任務多線程處理。。。最好的方式是第三方網站可以批量查詢
你以這么快的速度提交過去,第三方介面不一定能處理完成,可能有QPS限速的。這就不是你解決的了,需要第三方提升性能。
⑨ 如何處理大量數據並發操作
處理大量數據並發操作可以採用如下幾種方法:
1.使用緩存:使用程序直接保存到內存中。或者使用緩存框架: 用一個特定的類型值來保存,以區別空數據和未緩存的兩種狀態。
2.資料庫優化:表結構優化;SQL語句優化,語法優化和處理邏輯優化;分區;分表;索引優化;使用存儲過程代替直接操作。
3.分離活躍數據:可以分為活躍用戶和不活躍用戶。
4.批量讀取和延遲修改: 高並發情況可以將多個查詢請求合並到一個。高並發且頻繁修改的可以暫存緩存中。
5.讀寫分離: 資料庫伺服器配置多個,配置主從資料庫。寫用主資料庫,讀用從資料庫。
6.分布式資料庫: 將不同的表存放到不同的資料庫中,然後再放到不同的伺服器中。
7.NoSql和Hadoop: NoSql,not only SQL。沒有關系型資料庫那麼多限制,比較靈活高效。Hadoop,將一個表中的數據分層多塊,保存到多個節點(分布式)。每一塊數據都有多個節點保存(集群)。集群可以並行處理相同的數據,還可以保證數據的完整性。
拓展資料:
大數據(big data),指無法在一定時間范圍內用常規軟體工具進行捕捉、管理和處理的數據集合,是需要新處理模式才能具有更強的決策力、洞察發現力和流程優化能力的海量、高增長率和多樣化的信息資產。
在維克托·邁爾-舍恩伯格及肯尼斯·庫克耶編寫的《大數據時代》中大數據指不用隨機分析法(抽樣調查)這樣捷徑,而採用所有數據進行分析處理。大數據的5V特點(IBM提出):Volume(大量)、Velocity(高速)、Variety(多樣)、Value(低價值密度)、Veracity(真實性)。
⑩ mysql資料庫怎麼解決高並發問題
通常情況下在PHP中MySQL查詢是串列的,如果能實現MySQL查詢的非同步化,就能實現多條SQL語句同時執行,這樣就能大大地縮短MySQL查詢的耗時,提高資料庫查詢的效率。目前MySQL的非同步查詢只在MySQLi擴展提供,查詢方法分別是:
1、使用MYSQLI_ASYNC模式執行mysqli::query
2、獲取非同步查詢結果:mysqli::reap_async_query
使用mysql非同步查詢,需要使用mysqlnd作為PHP的MySQL資料庫驅動。
使用MySQL非同步查詢,因為需要給所有查詢都創建一個新的連接,而MySQL服務端會為每個連接創建一個單獨的線程進行處理,如果創建的線程過多,則會造成線程切換引起系統負載過高。Swoole中的非同步MySQL其原理是通過MYSQLI_ASYNC模式查詢,然後獲取mysql連接的socket,加入到epoll事件循環中,當資料庫返回結果時會回調指定函數,這個過程是完全非同步非阻塞的。