當前位置:首頁 » 操作系統 » 聚知演算法

聚知演算法

發布時間: 2022-06-25 02:22:59

❶ 聚類演算法有哪些

聚類演算法有:劃分法、層次法、密度演算法、圖論聚類法、網格演算法、模型演算法。

1、劃分法

劃分法(partitioning methods),給定一個有N個元組或者紀錄的數據集,分裂法將構造K個分組,每一個分組就代表一個聚類,K<N。使用這個基本思想的演算法有:K-MEANS演算法、K-MEDOIDS演算法、CLARANS演算法。

2、層次法

層次法(hierarchical methods),這種方法對給定的數據集進行層次似的分解,直到某種條件滿足為止。具體又可分為「自底向上」和「自頂向下」兩種方案。代表演算法有:BIRCH演算法、CURE演算法、CHAMELEON演算法等。

3、密度演算法

基於密度的方法(density-based methods),基於密度的方法與其它方法的一個根本區別是:它不是基於各種各樣的距離的,而是基於密度的。這樣就能克服基於距離的演算法只能發現「類圓形」的聚類的缺點。代表演算法有:DBSCAN演算法、OPTICS演算法、DENCLUE演算法等。

4、圖論聚類法

圖論聚類方法解決的第一步是建立與問題相適應的圖,圖的節點對應於被分析數據的最小單元,圖的邊(或弧)對應於最小處理單元數據之間的相似性度量。因此,每一個最小處理單元數據之間都會有一個度量表達,這就確保了數據的局部特性比較易於處理。圖論聚類法是以樣本數據的局域連接特徵作為聚類的主要信息源,因而其主要優點是易於處理局部數據的特性。

5、網格演算法

基於網格的方法(grid-based methods),這種方法首先將數據空間劃分成為有限個單元(cell)的網格結構,所有的處理都是以單個的單元為對象的。代表演算法有:STING演算法、CLIQUE演算法、WAVE-CLUSTER演算法。

6、模型演算法

基於模型的方法(model-based methods),基於模型的方法給每一個聚類假定一個模型,然後去尋找能夠很好的滿足這個模型的數據集。通常有兩種嘗試方向:統計的方案和神經網路的方案。

(1)聚知演算法擴展閱讀:

聚類分析起源於分類學,在古老的分類學中,人們主要依靠經驗和專業知識來實現分類,很少利用數學工具進行定量的分類。隨著人類科學技術的發展,對分類的要求越來越高,以致有時僅憑經驗和專業知識難以確切地進行分類,於是人們逐漸地把數學工具引用到了分類學中,形成了數值分類學,之後又將多元分析的技術引入到數值分類學形成了聚類分析。聚類分析內容非常豐富,有系統聚類法、有序樣品聚類法、動態聚類法、模糊聚類法、圖論聚類法、聚類預報法等。

在商業上,聚類可以幫助市場分析人員從消費者資料庫中區分出不同的消費群體來,並且概括出每一類消費者的消費模式或者說習慣。它作為數據挖掘中的一個模塊,可以作為一個單獨的工具以發現資料庫中分布的一些深層的信息,並且概括出每一類的特點,或者把注意力放在某一個特定的類上以作進一步的分析;並且,聚類分析也可以作為數據挖掘演算法中其他分析演算法的一個預處理步驟。

❷ 聚類演算法有哪些分類

聚類演算法的分類有:

1、劃分法

劃分法(partitioning methods),給定一個有N個元組或者紀錄的數據集,分裂法將構造K個分組,每一個分組就代表一個聚類,K小於N。而且這K個分組滿足下列條件:

(1) 每一個分組至少包含一個數據紀錄;

(2)每一個數據紀錄屬於且僅屬於一個分組(注意:這個要求在某些模糊聚類演算法中可以放寬);

2、層次法

層次法(hierarchical methods),這種方法對給定的數據集進行層次似的分解,直到某種條件滿足為止。具體又可分為「自底向上」和「自頂向下」兩種方案。

例如,在「自底向上」方案中,初始時每一個數據紀錄都組成一個單獨的組,在接下來的迭代中,它把那些相互鄰近的組合並成一個組,直到所有的記錄組成一個分組或者某個條件滿足為止。

3、密度演算法

基於密度的方法(density-based methods),基於密度的方法與其它方法的一個根本區別是:它不是基於各種各樣的距離的,而是基於密度的。這樣就能克服基於距離的演算法只能發現「類圓形」的聚類的缺點。

4、圖論聚類法

圖論聚類方法解決的第一步是建立與問題相適應的圖,圖的節點對應於被分析數據的最小單元,圖的邊(或弧)對應於最小處理單元數據之間的相似性度量。因此,每一個最小處理單元數據之間都會有一個度量表達,這就確保了數據的局部特性比較易於處理。圖論聚類法是以樣本數據的局域連接特徵作為聚類的主要信息源,因而其主要優點是易於處理局部數據的特性。

5、網格演算法

基於網格的方法(grid-based methods),這種方法首先將數據空間劃分成為有限個單元(cell)的網格結構,所有的處理都是以單個的單元為對象的。這么處理的一個突出的優點就是處理速度很快,通常這是與目標資料庫中記錄的個數無關的,它只與把數據空間分為多少個單元有關。

代表演算法有:STING演算法、CLIQUE演算法、WAVE-CLUSTER演算法;

6、模型演算法

基於模型的方法(model-based methods),基於模型的方法給每一個聚類假定一個模型,然後去尋找能夠很好的滿足這個模型的數據集。這樣一個模型可能是數據點在空間中的密度分布函數或者其它。它的一個潛在的假定就是:目標數據集是由一系列的概率分布所決定的。

通常有兩種嘗試方向:統計的方案和神經網路的方案。

(2)聚知演算法擴展閱讀:

聚類演算法的要求:

1、可伸縮性

許多聚類演算法在小於 200 個數據對象的小數據集合上工作得很好;但是,一個大規模資料庫可能包含幾百萬個對象,在這樣的大數據集合樣本上進行聚類可能會導致有偏的結果。

我們需要具有高度可伸縮性的聚類演算法。

2、不同屬性

許多演算法被設計用來聚類數值類型的數據。但是,應用可能要求聚類其他類型的數據,如二元類型(binary),分類/標稱類型(categorical/nominal),序數型(ordinal)數據,或者這些數據類型的混合。

3、任意形狀

許多聚類演算法基於歐幾里得或者曼哈頓距離度量來決定聚類。基於這樣的距離度量的演算法趨向於發現具有相近尺度和密度的球狀簇。但是,一個簇可能是任意形狀的。提出能發現任意形狀簇的演算法是很重要的。

4、領域最小化

許多聚類演算法在聚類分析中要求用戶輸入一定的參數,例如希望產生的簇的數目。聚類結果對於輸入參數十分敏感。參數通常很難確定,特別是對於包含高維對象的數據集來說。這樣不僅加重了用戶的負擔,也使得聚類的質量難以控制。

5、處理「雜訊」

絕大多數現實中的資料庫都包含了孤立點,缺失,或者錯誤的數據。一些聚類演算法對於這樣的數據敏感,可能導致低質量的聚類結果。

6、記錄順序

一些聚類演算法對於輸入數據的順序是敏感的。例如,同一個數據集合,當以不同的順序交給同一個演算法時,可能生成差別很大的聚類結果。開發對數據輸入順序不敏感的演算法具有重要的意義。

❸ 聚類演算法有哪幾種

聚類演算法有:聚類分析是通過數據建模簡化數據的一種方法。傳統的統計聚類分析方法包括系統聚類法、分解法、加入法、動態聚類法、有序樣品聚類、有重疊聚類和模糊聚類等。採用k均值、k中心點等演算法的聚類分析工具已被加入到許多著名的統計分析軟體包中,如SPSS、SAS等。

❹ 聚類演算法的具體方法

k-means 演算法接受輸入量 k ;然後將n個數據對象劃分為 k個聚類以便使得所獲得的聚類滿足:同一聚類中的對象相似度較高;而不同聚類中的對象相似度較小。聚類相似度是利用各聚類中對象的均值所獲得一個「中心對象」(引力中心)來進行計算的。
k-means 演算法的工作過程說明如下:
首先從n個數據對象任意選擇 k 個對象作為初始聚類中心;而對於所剩下其它對象,則根據它們與這些聚類中心的相似度(距離),分別將它們分配給與其最相似的(聚類中心所代表的)聚類;
然後再計算每個所獲新聚類的聚類中心(該聚類中所有對象的均值);不斷重復這一過程直到標准測度函數開始收斂為止。
一般都採用均方差作為標准測度函數. k個聚類具有以下特點:各聚類本身盡可能的緊湊,而各聚類之間盡可能的分開。 K-MEANS有其缺點:產生類的大小相差不會很大,對於臟數據很敏感。
改進的演算法:k—medoids 方法。這兒選取一個對象叫做mediod來代替上面的中心的作用,這樣的一個medoid就標識了這個類。K-medoids和K-means不一樣的地方在於中心點的選取,在K-means中,我們將中心點取為當前cluster中所有數據點的平均值,在 K-medoids演算法中,我們將從當前cluster 中選取這樣一個點——它到其他所有(當前cluster中的)點的距離之和最小——作為中心點。
步驟:
1,任意選取K個對象作為medoids(O1,O2,…Oi…Ok)。
以下是循環的:
2,將餘下的對象分到各個類中去(根據與medoid最相近的原則);
3,對於每個類(Oi)中,順序選取一個Or,計算用Or代替Oi後的消耗—E(Or)。選擇E最小的那個Or來代替Oi。這樣K個medoids就改變了,下面就再轉到2。
4,這樣循環直到K個medoids固定下來。
這種演算法對於臟數據和異常數據不敏感,但計算量顯然要比K均值要大,一般只適合小數據量。 上面提到K-medoids演算法不適合於大數據量的計算。Clara演算法,這是一種基於采樣的方法,它能夠處理大量的數據。
Clara演算法的思想就是用實際數據的抽樣來代替整個數據,然後再在這些抽樣的數據上利用K-medoids演算法得到最佳的medoids。Clara演算法從實際數據中抽取多個采樣,在每個采樣上都用K-medoids演算法得到相應的(O1, O2 … Oi … Ok),然後在這當中選取E最小的一個作為最終的結果。 Clara演算法的效率取決於采樣的大小,一般不太可能得到最佳的結果。
在Clara演算法的基礎上,又提出了Clarans的演算法,與Clara演算法不同的是:在Clara演算法尋找最佳的medoids的過程中,采樣都是不變的。而Clarans演算法在每一次循環的過程中所採用的采樣都是不一樣的。
與上面所講的尋找最佳medoids的過程不同的是,必須人為地來限定循環的次數。

❺ 聚類演算法的演算法分類

很難對聚類方法提出一個簡潔的分類,因為這些類別可能重疊,從而使得一種方法具有幾類的特徵,盡管如此,對於各種不同的聚類方法提供一個相對有組織的描述依然是有用的,為聚類分析計算方法主要有如下幾種: 劃分法(partitioning methods),給定一個有N個元組或者紀錄的數據集,分裂法將構造K個分組,每一個分組就代表一個聚類,K<N。而且這K個分組滿足下列條件:
(1) 每一個分組至少包含一個數據紀錄;
(2)每一個數據紀錄屬於且僅屬於一個分組(注意:這個要求在某些模糊聚類演算法中可以放寬);
對於給定的K,演算法首先給出一個初始的分組方法,以後通過反復迭代的方法改變分組,使得每一次改進之後的分組方案都較前一次好,而所謂好的標准就是:同一分組中的記錄越近越好,而不同分組中的紀錄越遠越好。
大部分劃分方法是基於距離的。給定要構建的分區數k,劃分方法首先創建一個初始化劃分。然後,它採用一種迭代的重定位技術,通過把對象從一個組移動到另一個組來進行劃分。一個好的劃分的一般准備是:同一個簇中的對象盡可能相互接近或相關,而不同的簇中的對象盡可能遠離或不同。還有許多評判劃分質量的其他准則。傳統的劃分方法可以擴展到子空間聚類,而不是搜索整個數據空間。當存在很多屬性並且數據稀疏時,這是有用的。為了達到全局最優,基於劃分的聚類可能需要窮舉所有可能的劃分,計算量極大。實際上,大多數應用都採用了流行的啟發式方法,如k-均值和k-中心演算法,漸近的提高聚類質量,逼近局部最優解。這些啟發式聚類方法很適合發現中小規模的資料庫中小規模的資料庫中的球狀簇。為了發現具有復雜形狀的簇和對超大型數據集進行聚類,需要進一步擴展基於劃分的方法。
使用這個基本思想的演算法有:K-MEANS演算法、K-MEDOIDS演算法、CLARANS演算法; 層次法(hierarchical methods),這種方法對給定的數據集進行層次似的分解,直到某種條件滿足為止。具體又可分為「自底向上」和「自頂向下」兩種方案。
例如,在「自底向上」方案中,初始時每一個數據紀錄都組成一個單獨的組,在接下來的迭代中,它把那些相互鄰近的組合並成一個組,直到所有的記錄組成一個分組或者某個條件滿足為止。
層次聚類方法可以是基於距離的或基於密度或連通性的。層次聚類方法的一些擴展也考慮了子空間聚類。層次方法的缺陷在於,一旦一個步驟(合並或分裂)完成,它就不能被撤銷。這個嚴格規定是有用的,因為不用擔心不同選擇的組合數目,它將產生較小的計算開銷。然而這種技術不能更正錯誤的決定。已經提出了一些提高層次聚類質量的方法。
代表演算法有:BIRCH演算法、CURE演算法、CHAMELEON演算法等; 基於密度的方法(density-based methods),基於密度的方法與其它方法的一個根本區別是:它不是基於各種各樣的距離的,而是基於密度的。這樣就能克服基於距離的演算法只能發現「類圓形」的聚類的缺點。
這個方法的指導思想就是,只要一個區域中的點的密度大過某個閾值,就把它加到與之相近的聚類中去。
代表演算法有:DBSCAN演算法、OPTICS演算法、DENCLUE演算法等; 基於網格的方法(grid-based methods),這種方法首先將數據空間劃分成為有限個單元(cell)的網格結構,所有的處理都是以單個的單元為對象的。這么處理的一個突出的優點就是處理速度很快,通常這是與目標資料庫中記錄的個數無關的,它只與把數據空間分為多少個單元有關。
代表演算法有:STING演算法、CLIQUE演算法、WAVE-CLUSTER演算法; 基於模型的方法(model-based methods),基於模型的方法給每一個聚類假定一個模型,然後去尋找能夠很好的滿足這個模型的數據集。這樣一個模型可能是數據點在空間中的密度分布函數或者其它。它的一個潛在的假定就是:目標數據集是由一系列的概率分布所決定的。
通常有兩種嘗試方向:統計的方案和神經網路的方案。

❻ 聚類演算法有哪幾種

聚類分析計算方法主要有: 層次的方法(hierarchical method)、劃分方法(partitioning method)、基於密度的方法(density-based method)、基於網格的方法(grid-based method)、基於模型的方法(model-based method)等。其中,前兩種演算法是利用統計學定義的距離進行度量。
k-means 演算法的工作過程說明如下:首先從n個數據對象任意選擇 k 個對象作為初始聚類中心;而對於所剩下其它對象,則根據它們與這些聚類中心的相似度(距離),分別將它們分配給與其最相似的(聚類中心所代表的)聚類;然 後再計算每個所獲新聚類的聚類中心(該聚類中所有對象的均值);不斷重復這一過程直到標准測度函數開始收斂為止。一般都採用均方差作為標准測度函數. k個聚類具有以下特點:各聚類本身盡可能的緊湊,而各聚類之間盡可能的分開。
其流程如下:
(1)從 n個數據對象任意選擇 k 個對象作為初始聚類中心;
(2)根據每個聚類對象的均值(中心對象),計算每個對象與這些中心對象的距離;並根據最小距離重新對相應對象進行劃分;
(3)重新計算每個(有變化)聚類的均值(中心對象);
(4)循環(2)、(3)直到每個聚類不再發生變化為止(標准測量函數收斂)。
優點: 本演算法確定的K個劃分到達平方誤差最小。當聚類是密集的,且類與類之間區別明顯時,效果較好。對於處理大數據集,這個演算法是相對可伸縮和高效的,計算的復雜度為 O(NKt),其中N是數據對象的數目,t是迭代的次數。
缺點:
1. K 是事先給定的,但非常難以選定;
2. 初始聚類中心的選擇對聚類結果有較大的影響。

❼ 有哪些常用的聚類演算法

【聚類】聚類分析是直接比較各對象之間的性質,根據在對象屬性中發現的描述對象及其關系的信息,將數據對象分組。其目標是,組內的對象相互之間是相似的(相關的),而不同組中的對象是不同的(不相關的)。組內的相似性(同質性)越大,組間差別越大,聚類就越好。

聚類的目標是通過對無標記訓練樣本的學習來揭示數據的內在性質及規律,是無監督學習過程。在無監督學習中,訓練樣本標記信息是未知的。聚類試圖將數據集中的樣本劃分為若干個通常不相交的子集,每個子集稱為一個「簇」,每個簇可能對應於一些潛在的類別,這些類別概念對聚類演算法而言事先是未知的,聚類過程僅能自動形成簇結構,簇所對應的概念語義需要由使用者來把握和命名。

❽ 大數據分析之聚類演算法

大數據分析之聚類演算法
1. 什麼是聚類演算法
所謂聚類,就是比如給定一些元素或者對象,分散存儲在資料庫中,然後根據我們感興趣的對象屬性,對其進行聚集,同類的對象之間相似度高,不同類之間差異較大。最大特點就是事先不確定類別。
這其中最經典的演算法就是KMeans演算法,這是最常用的聚類演算法,主要思想是:在給定K值和K個初始類簇中心點的情況下,把每個點(亦即數據記錄)分到離其最近的類簇中心點所代表的類簇中,所有點分配完畢之後,根據一個類簇內的所有點重新計算該類簇的中心點(取平均值),然後再迭代的進行分配點和更新類簇中心點的步驟,直至類簇中心點的變化很小,或者達到指定的迭代次數。
KMeans演算法本身思想比較簡單,但是合理的確定K值和K個初始類簇中心點對於聚類效果的好壞有很大的影響。
聚類演算法實現
假設對象集合為D,准備劃分為k個簇。
基本演算法步驟如下:
1、從D中隨機取k個元素,作為k個簇的各自的中心。
2、分別計算剩下的元素到k個簇中心的相異度,將這些元素分別劃歸到相異度最低的簇。
3、根據聚類結果,重新計算k個簇各自的中心,計算方法是取簇中所有元素各自維度的算術平均數。
4、將D中全部元素按照新的中心重新聚類。
5、重復第4步,直到聚類結果不再變化。
6、將結果輸出。

核心Java代碼如下:
/**
* 迭代計算每個點到各個中心點的距離,選擇最小距離將該點劃入到合適的分組聚類中,反復進行,直到
* 分組不再變化或者各個中心點不再變化為止。
* @return
*/
public List[] comput() {
List[] results = new ArrayList[k];//為k個分組,分別定義一個聚簇集合,未來放入元素。

boolean centerchange = true;//該變數存儲中心點是否發生變化
while (centerchange) {
iterCount++;//存儲迭代次數
centerchange = false;
for (int i = 0; i < k; i++) {
results[i] = new ArrayList<T>();
}
for (int i = 0; i < players.size(); i++) {
T p = players.get(i);
double[] dists = new double[k];
for (int j = 0; j < initPlayers.size(); j++) {
T initP = initPlayers.get(j);
/* 計算距離 這里採用的公式是兩個對象相關屬性的平方和,最後求開方*/
double dist = distance(initP, p);
dists[j] = dist;
}

int dist_index = computOrder(dists);//計算該點到各個質心的距離的最小值,獲得下標
results[dist_index].add(p);//劃分到對應的分組。
}
/*
* 將點聚類之後,重新尋找每個簇的新的中心點,根據每個點的關注屬性的平均值確立新的質心。
*/
for (int i = 0; i < k; i++) {
T player_new = findNewCenter(results[i]);
System.out.println("第"+iterCount+"次迭代,中心點是:"+player_new.toString());
T player_old = initPlayers.get(i);
if (!IsPlayerEqual(player_new, player_old)) {
centerchange = true;
initPlayers.set(i, player_new);
}

}

}

return results;
}
上面代碼是其中核心代碼,我們根據對象集合List和提前設定的k個聚集,最終完成聚類。我們測試一下,假設要測試根據NBA球員的場均得分情況,進行得分高中低的聚集,很簡單,高得分在一組,中等一組,低得分一組。
我們定義一個Player類,裡面有屬性goal,並錄入數據。並設定分組數目為k=3。
測試代碼如下:
List listPlayers = new ArrayList();
Player p1 = new Player();
p1.setName(「mrchi1」);
p1.setGoal(1);
p1.setAssists(8);
listPlayers.add(p1);

Player p2 = new Player();
p2.setName("mrchi2");
p2.setGoal(2);
listPlayers.add(p2);

Player p3 = new Player();
p3.setName("mrchi3");
p3.setGoal(3);
listPlayers.add(p3);
//其他對象定義此處略。製造幾個球員的對象即可。
Kmeans<Player> kmeans = new Kmeans<Player>(listPlayers, 3);
List<Player>[] results = kmeans.comput();
for (int i = 0; i < results.length; i++) {
System.out.println("類別" + (i + 1) + "聚集了以下球員:");
List<Player> list = results[i];
for (Player p : list) {
System.out.println(p.getName() + "--->" + p.getGoal()

}
}
演算法運行結果:

可以看出中心點經歷了四次迭代變化,最終分類結果也確實是相近得分的分到了一組。當然這種演算法有缺點,首先就是初始的k個中心點的確定非常重要,結果也有差異。可以選擇彼此距離盡可能遠的K個點,也可以先對數據用層次聚類演算法進行聚類,得到K個簇之後,從每個類簇中選擇一個點,該點可以是該類簇的中心點,或者是距離類簇中心點最近的那個點。

❾ 什麼是聚類分析聚類演算法有哪幾種

聚類分析是分類演算法中的一種,是無監督的,不需要訓練。
聚類演算法分為:硬聚類演算法和軟聚類演算法,硬聚類中最經典的是K均值聚類演算法,就是大家所說的K-means演算法,軟聚類演算法中最經典的是模糊C均值聚類演算法,就是FCM。後續的一些聚類演算法都是在這兩種上改進的

❿ 聚類演算法的聚類要求

許多聚類演算法在小於 200 個數據對象的小數據集合上工作得很好;但是,一個大規模資料庫可能包含幾百萬個對象,在這樣的大數據集合樣本上進行聚類可能會導致有偏的結果。
我們需要具有高度可伸縮性的聚類演算法。 (high dimensionality)
一個資料庫或者數據倉庫可能包含若干維或者屬性。許多聚類演算法擅長處理低維的數據,可能只涉及兩到三維。人類的眼睛在最多三維的情況下能夠很好地判斷聚類的質量。在高維空間中聚類數據對象是非常有挑戰性的,特別是考慮到這樣的數據可能分布非常稀疏,而且高度偏斜。 用戶希望聚類結果是可解釋的,可理解的,和可用的。也就是說,聚類可能需要和特定的語義解釋和應用相聯系。應用目標如何影響聚類方法的選擇也是一個重要的研究課題。
記住這些約束,我們對聚類分析的學習將按如下的步驟進行。首先,學習不同類型的數據,以及它們對聚類方法的影響。接著,給出了一個聚類方法的一般分類。然後我們詳細地討論了各種聚類方法,包括劃分方法,層次方法,基於密度的方法,基於網格的方法,以及基於模型的方法。最後我們探討在高維空間中的聚類和孤立點分析(outlier analysis)。

熱點內容
go語言編譯模式 發布:2025-01-20 19:57:25 瀏覽:405
超能編程 發布:2025-01-20 19:56:26 瀏覽:1000
安卓手機怎麼連藍牙汽車 發布:2025-01-20 19:39:05 瀏覽:253
保定軍工存儲廠家 發布:2025-01-20 19:38:53 瀏覽:795
雲伺服器ecs服務條款 發布:2025-01-20 19:19:36 瀏覽:47
安卓系統顯示屏怎麼設置屏保 發布:2025-01-20 19:18:53 瀏覽:896
有鎖機和配置鎖哪個好 發布:2025-01-20 19:18:05 瀏覽:767
安卓版軟體如何設置 發布:2025-01-20 18:58:53 瀏覽:58
java中級項目案例 發布:2025-01-20 18:58:52 瀏覽:913
sql日誌查看工具 發布:2025-01-20 18:57:12 瀏覽:243