當前位置:首頁 » 操作系統 » 進程程序演算法

進程程序演算法

發布時間: 2022-06-20 22:22:54

① 用c語言編寫並調試一個模擬的進程調度程序,採用「簡單時間片輪轉法」調度演算法對五個進程進行調度。

#include "stdio.h"
#include "stdlib.h"
#include "string.h"

struct PCB {
char NAME[10]; /*進程名*/
int ROUND; /*進程輪轉時間片*/
int REACHTIME; /*進程到達時間*/
int CPUTIME; /*進程佔用CPU時間*/
int COUNT; /*計數器*/
int NEEDTIME; /*進程完成還要的CPU時間*/
char STATE; /*進程的狀態*/
struct PCB *NEXT; /*鏈指針*/
};

struct LINK { /*PCB的鏈結構*/
struct PCB *RUN; /*當前運行進程指針*/
struct PCB *READY; /*就緒隊列頭指針*/
struct PCB *TAIL; /*就緒隊列尾指針*/
struct PCB *FINISH; /*完成隊列頭指針*/
};

void INIT(LINK *); /*對PCB的鏈結構初始化*/
void INSERT(LINK *); /*將執行了一個單位時間片數且還未完成的進程的PCB插到就緒隊列的隊尾*/
void FIRSTIN(LINK *); /*將就緒隊列中的第一個進程投入運行*/
void PRINT(LINK *); /*列印每執行一個時間片後的所有進程的狀態*/
void PR(PCB *); /*列印一個進程的狀態*/
int CREATE(LINK *,int); /*創建新的進程*/
void ROUNDSCH(LINK *); /*按時間片輪轉法調度進程*/

void main() {
LINK pcbs;
int i;
INIT(&pcbs);
i=0;
printf("創建5個進程\n\n");
while(i<5) {
if(CREATE(&pcbs,i+1)==1) {
printf("進程已創建\n\n");
i++;
}
else
printf("進程創建失敗\n\n");
}
FIRSTIN(&pcbs);
ROUNDSCH(&pcbs);
}

void ROUNDSCH(LINK *p) {
PCB *pcb;
while(p->RUN!=NULL) {
pcb=(PCB *)malloc(sizeof(PCB));
strcpy(pcb->NAME,p->RUN->NAME);
pcb->ROUND=p->RUN->ROUND;
pcb->REACHTIME=p->RUN->REACHTIME;
pcb->CPUTIME=p->RUN->CPUTIME;
pcb->COUNT=p->RUN->COUNT;
pcb->NEEDTIME=p->RUN->NEEDTIME;
pcb->STATE=p->RUN->STATE;
pcb->NEXT=p->RUN->NEXT;
pcb->CPUTIME++;
pcb->NEEDTIME--;
pcb->COUNT++;
if(pcb->NEEDTIME==0) {
pcb->NEXT=p->FINISH->NEXT;
p->FINISH->NEXT=pcb;
pcb->STATE='F';
p->RUN=NULL;
if(p->READY!=p->TAIL)
FIRSTIN(p);
}
else {
p->RUN=pcb;
if(pcb->COUNT==pcb->ROUND) {
pcb->COUNT=0;
if(p->READY!=p->TAIL) {
pcb->STATE='W';
INSERT(p);
FIRSTIN(p);
}
}
}
PRINT(p);
}
}

void INIT(LINK *p) {
p->RUN=NULL;
p->TAIL=p->READY=(PCB *)malloc(sizeof(PCB));
p->READY->NEXT=NULL;
p->FINISH=(PCB *)malloc(sizeof(PCB));
p->FINISH->NEXT=NULL;
}

int CREATE(LINK *p,int n) {
PCB *pcb,*q;
pcb=(PCB *)malloc(sizeof(PCB));
flushall();
printf("請輸入第%d個進程的名稱:\n",n);
gets(pcb->NAME);
printf("請輸入第%d個進程的輪轉時間片數:\n",n);
scanf("%d",&(pcb->ROUND));
printf("請輸入第%d個進程的到達時間:\n",n);
scanf("%d",&(pcb->REACHTIME));
pcb->CPUTIME=0;
pcb->COUNT=0;
printf("請輸入第%d個進程需運行的時間片數:\n",n);
scanf("%d",&(pcb->NEEDTIME));
pcb->STATE='W';
pcb->NEXT=NULL;
if(strcmp(pcb->NAME,"")==0||pcb->ROUND<=0||pcb->NEEDTIME<=0) /*輸入錯誤*/
return 0;
q=p->READY;
while(q->NEXT!=NULL&&q->NEXT->REACHTIME<=pcb->REACHTIME)
q=q->NEXT;
pcb->NEXT=q->NEXT;
q->NEXT=pcb;
if(pcb->NEXT==NULL)
p->TAIL=pcb;
return 1;
}

void FIRSTIN(LINK *p) {
PCB *q;
q=p->READY->NEXT;
p->READY->NEXT=q->NEXT;
q->NEXT=NULL;
if(p->READY->NEXT==NULL)
p->TAIL=p->READY;
q->STATE='R';
p->RUN=q;
}

void INSERT(LINK *p) {
PCB *pcb;
pcb=(PCB *)malloc(sizeof(PCB));
strcpy(pcb->NAME,p->RUN->NAME);
pcb->ROUND=p->RUN->ROUND;
pcb->REACHTIME=p->RUN->REACHTIME;
pcb->CPUTIME=p->RUN->CPUTIME;
pcb->COUNT=p->RUN->COUNT;
pcb->NEEDTIME=p->RUN->NEEDTIME;
pcb->STATE=p->RUN->STATE;
pcb->NEXT=p->RUN->NEXT;
p->TAIL->NEXT=pcb;
p->TAIL=pcb;
p->RUN=NULL;
pcb->STATE='W';
}

void PRINT(LINK *p) {
PCB *pcb;
printf("執行一個時間片後的所有進程的狀態:\n\n");
if(p->RUN!=NULL)
PR(p->RUN);
if(p->READY!=p->TAIL) {
pcb=p->READY->NEXT;
while(pcb!=NULL) {
PR(pcb);
pcb=pcb->NEXT;
}
}
pcb=p->FINISH->NEXT;
while(pcb!=NULL) {
PR(pcb);
pcb=pcb->NEXT;
}
}

void PR(PCB *p) {
printf("進程名:%s\n",p->NAME);
printf("進程輪轉時間片:%d\n",p->ROUND);
printf("進程到達時間:%d\n",p->REACHTIME);
printf("進程佔用CPU時間:%d\n",p->CPUTIME);
printf("計數器:%d\n",p->COUNT);
printf("進程完成還要的CPU時間:%d\n",p->NEEDTIME);
printf("進程的狀態:%c\n\n",p->STATE);
}

② 進程調度演算法

調度算指:根據系統資源配策略所規定資源配算
、先先服務短作業(進程)優先調度算
1.
先先服務調度算先先服務(FCFS)調度算種簡單調度算該算既用於作業調度
用於進程調度FCFS算比較利於作業(進程)利於短作業(進程)由知本算適合於CPU繁忙型作業
利於I/O繁忙型作業(進程)
2.
短作業(進程)優先調度算短作業(進程)優先調度算(SJ/PF)指短作業或短進程優先調度算該算既用於作業調度
用於進程調度其作業利;能保證緊迫性作業(進程)及處理;作業短估算
二、高優先權優先調度算
1.
優先權調度算類型照顧緊迫性作業使進入系統便獲優先處理引入高優先權優先(FPF)調度算
算用批處理系統作作業調度算作種操作系統進程調度用於實系統其用於作業調度
備隊列若干優先權高作業裝入內存其用於進程調度處理機配給緒隊列優先權高進程
進步該算兩種:
1)非搶占式優先權算
2)搶占式優先權調度算(高性能計算機操作系統)
2.
優先權類型
於高優先權優先調度算其核於:使用靜態優先權態優先權
及何確定進程優先權
3.
高響應比優先調度算
彌補短作業優先算足我引入態優先權使作業優先等級隨著等待間增加速率a提高
該優先權變化規律描述:優先權=(等待間+要求服務間)/要求服務間;即
=(響應間)/要求服務間
三、基於間片輪轉調度算
1.
間片輪轉間片輪轉般用於進程調度每調度CPU配隊首進程並令其執行間片
執行間片用完由記器發鍾斷請求該進程停止並送往緒隊列末尾;依循環
2.
級反饋隊列調度算
級反饋隊列調度算級反饋隊列調度算必事先知道各種進程所需要執行間目前公認種較進程調度算
其實施程:
1)
設置緒隊列並各隊列賦予同優先順序優先權越高隊列
每進程所規定執行間片越
2)
新進程進入內存首先放入第隊列末尾按FCFS原則排隊等候調度
能間片完便撤離;未完轉入第二隊列末尾同等待調度……
作業(進程)第隊列依第n隊列(隊列)便按第n隊列間片輪轉運行
3)
僅第隊列空閑調度程序才調度第二隊列進程運行;僅第1第(i-1)隊列空
才調度第i隊列進程運行並執行相應間片輪轉
4)
處理機處理第i隊列某進程新進程進入優先權較高隊列
則新隊列搶占運行處理機並運行進程放第i隊列隊尾

③ (操作系統)編寫進程調度演算法程序

這個只要調個隊列就夠了,主要的代碼應該這樣寫就可以了:
while(!que.empty()) //que是進程的隊列
{
pid_t pid = fork();
switch(pid)
{
case -1 : printf("ERROR:cannot create the child process.\n"); break;
case 0: execlp(……); //這里execlp調用的是que.top(),這個進程要寫在當前目錄下
default : wait(NULL);
}
}
等待某一時間不能繼續執行,可以使wait函數的參數取具體的狀態值,希望可以幫到你!

④ 進程演算法和程序之間的關系

進程是程序的一次執行

⑤ 求進程調度先來先服務演算法,短進程優先演算法完整c語言代碼

/*(一)進程調度

進程調度演算法有FIFO,優先數調度演算法,時間片輪轉調度演算法,分級調度演算法,

輸入:進程流文件,其中存儲的是一系列要執行的進程,
每個作業包括三個數據項:
進程名 所需時間 優先數(0級最高)
輸出:
進程執行流 等待時間 平均等待時間

本程序包括:FIFO,優先數調度演算法,時間片輪轉調度演算法

進程流文件process_stream.txt
測試數據:
p0 16 2
p1 5 1
p2 4 3
p3 8 0
p4 9 4
p5 7 6

VC++調試通過
*/
#include <stdio.h>
#include <string.h>
#include <iostream.h>
#include <stdlib.h>

const int Quatum=2;//定義時間片的長度為2秒
const int MAXPCB=100;//定義最大進程數

//定義進程結構體
typedef struct node
{
char name[20];//進程名
int time; //進程運行時間
int privilege;//進程優先順序(靜態)
int finished;//進程完成標志,0-未完成,1-已完成
int wait_time;//進程等待時間
}pcb;

pcb pcbs[MAXPCB];
int quantiry;//進程流文件中的進程總數

void initial()
{
int i;
for (i=0;i<MAXPCB;i++)
{
strcpy(pcbs[i].name,"");
pcbs[i].time=0;
pcbs[i].privilege=0;
pcbs[i].finished=0;
pcbs[i].wait_time=0;
}
quantiry=0;
}

int readData()
{
FILE *fp;
char fname[20];
int i;
cout<<"請輸入進程流文件名:"<<endl;
cin>>fname;
if ((fp=fopen(fname,"r"))==NULL)
{
cout<<"錯誤,文件打不開,請檢查文件名"<<endl;
}
else
{
while (!feof(fp))
{
fscanf(fp,"%s %d %d %d",pcbs[quantiry].name,
&pcbs[quantiry].time,&pcbs[quantiry].privilege);
quantiry++;
}
//輸出所讀入得數據
cout<<"輸出所讀入的數據"<<endl;
cout<<"進程流文件中的進程總數="<<quantiry<<endl;
cout<<"進程名 所需時間 優先數"<<endl;

for (i=0;i<quantiry;i++)
{
cout<<" "<<pcbs[i].name<<" "<<pcbs[i].time<<" "<<pcbs[i].privilege<<endl;
}

return 1;
}

return 0;
}

//重置數據,以供另一個演算法使用
void init()
{
int i;
for (i=0;i<MAXPCB;i++)
{
pcbs[i].finished=0;
pcbs[i].wait_time=0;
}
}

void FIFO()
{
int i,j;

int total;
//輸出FIFO演算法執行流
cout<<endl<<"---------------------------------------------------------------"<<endl;
cout<<"FIFO演算法執行流:"<<endl;
cout<<"進程名 等待時間"<<endl;

for (i=0;i<quantiry;i++)
{
cout<<" "<<pcbs[i].name<<" "<<pcbs[i].wait_time<<endl;
for (j=i+1;j<quantiry;j++)
{
pcbs[j].wait_time+=pcbs[i].time;
}
}

total=0;
for (i=0;i<quantiry;i++)
{
total+=pcbs[i].wait_time;
}
cout<<"總等待時間:"<<total<<" "<<"平均等待時間:"<<total/quantiry<<endl;
}

//優先度調度演算法
void privilege()
{
int i,j,p;
int passed_time=0;
int total;

int queue[MAXPCB];
int current_privielege=1000;

for (i=0;i<quantiry;i++)
{
current_privielege=1000;
for (j=0;j<quantiry;j++)
{
if ((pcbs[j].finished==0)&&(pcbs[j].privilege<current_privielege))
{
p=j;
current_privielege=pcbs[j].privilege;
}
}
queue[i]=p;
pcbs[p].finished=1;
pcbs[p].wait_time+=passed_time;
passed_time+=pcbs[p].time;

}
//輸出優先數調度執行流
cout<<endl<<"-----------------------------------------"<<endl;
cout<<"優先數調度執行流:"<<endl;
cout<<"進程名 等待時間"<<endl;

for (i=0;i<quantiry;i++)
{
cout<<" "<<pcbs[queue[i]].name<<" "<<pcbs[queue[i]].wait_time<<"--"<<queue[i]<<endl;
}

total=0;
for (i=0;i<quantiry;i++)
{
total+=pcbs[i].wait_time;
}

cout<<"總等待時間:"<<total<<" 平均等待時間:"<<total/quantiry<<endl;
}

//時間片輪轉調度演算法
void timer()
{
int i,j,sum,flag=1;
int passed_time=0;
int max_time=0;
int round=0;

int queue[1000];
int total=0;

while(flag==1)
{
flag=0;
for (i=0;i<quantiry;i++)
{
if (pcbs[i].finished==0)
{
flag=1;
queue[total]=i;
total++;
if (pcbs[i].time<=Quatum*(round+1))
pcbs[i].finished=1;
}
}
round++;
}

cout<<endl<<"---------------------------------------------------------------"<<endl;
cout<<"時間片輪轉調度執行流:";
for(i=0;i<total;i++)
{
cout<<pcbs[queue[i]].name<<" ";
}
cout<<endl;
cout<<"進程名 結束時間 運行時間 等待時間"<<endl;

sum=0;

for (i=0;i<quantiry;i++)
{
for(j=total-1;j>=0;j--)//從輪轉調度執行流序列由後往前比較,找到同名進程即可計算其完成時間
{
if (strcmp(pcbs[queue[j]].name,pcbs[i].name)==0)
{
cout<<" "<<pcbs[i].name<<" "<<(j+1)*Quatum<<" ";
cout<<pcbs[i].time<<" "<<(j+1)*Quatum-pcbs[i].time<<endl;
sum+=(j+1)*Quatum-pcbs[i].time;
break;
}
}
}

cout<<"總等待時間:"<<sum<<" "<<"平均等待時間:"<<sum/quantiry<<endl;
}

//顯示版權信息函數
void version()
{
cout<<endl<<endl;

cout<<" ┏━━━━━━━━━━━━━━━━━━━━━━━┓"<<endl;
cout<<" ┃ 進程調度模擬系統 ┃"<<endl;
cout<<" ┠───────────────────────┨"<<endl;
cout<<" ┃ version 2011 ┃"<<endl;
cout<<" ┗━━━━━━━━━━━━━━━━━━━━━━━┛"<<endl;
cout<<endl<<endl;
}
//主函數

int main()
{
int flag;
version();
initial();
flag=readData();
if(flag==1){
FIFO();
init();
privilege();
init();
timer();
}
cout<<endl;
system("pause");
return 0;
}

⑥ 操作系統進程調度演算法

你好,我復制的,希望對你有用。
調度演算法是指:根據系統的資源分配策略所規定的資源分配演算法。
一、先來先服務和短作業(進程)優先調度演算法

1. 先來先服務調度演算法。先來先服務(FCFS)調度演算法是一種最簡單的調度演算法,該演算法既可用於作業調度, 也可用於進程調度。FCFS演算法比較有利於長作業(進程),而不利於短作業(進程)。由此可知,本演算法適合於CPU繁忙型作業, 而不利於I/O繁忙型的作業(進程)。
2. 短作業(進程)優先調度演算法。短作業(進程)優先調度演算法(SJ/PF)是指對短作業或短進程優先調度的演算法,該演算法既可用於作業調度, 也可用於進程調度。但其對長作業不利;不能保證緊迫性作業(進程)被及時處理;作業的長短只是被估算出來的。

二、高優先權優先調度演算法

1. 優先權調度演算法的類型。為了照顧緊迫性作業,使之進入系統後便獲得優先處理,引入了最高優先權優先(FPF)調度演算法。 此演算法常被用在批處理系統中,作為作業調度演算法,也作為多種操作系統中的進程調度,還可以用於實時系統中。當其用於作業調度, 將後備隊列中若干個優先權最高的作業裝入內存。當其用於進程調度時,把處理機分配給就緒隊列中優先權最高的進程,此時, 又可以進一步把該演算法分成以下兩種:
1)非搶占式優先權演算法
2)搶占式優先權調度演算法(高性能計算機操作系統)
2. 優先權類型 。對於最高優先權優先調度演算法,其核心在於:它是使用靜態優先權還是動態優先權, 以及如何確定進程的優先權。
3. 高響應比優先調度演算法
為了彌補短作業優先演算法的不足,我們引入動態優先權,使作業的優先等級隨著等待時間的增加而以速率a提高。 該優先權變化規律可描述為:優先權=(等待時間+要求服務時間)/要求服務時間;即 =(響應時間)/要求服務時間

三、基於時間片的輪轉調度演算法

1. 時間片輪轉法。時間片輪轉法一般用於進程調度,每次調度,把CPU分配隊首進程,並令其執行一個時間片。 當執行的時間片用完時,由一個記時器發出一個時鍾中斷請求,該進程被停止,並被送往就緒隊列末尾;依次循環。 2. 多級反饋隊列調度演算法 多級反饋隊列調度演算法多級反饋隊列調度演算法,不必事先知道各種進程所需要執行的時間,它是目前被公認的一種較好的進程調度演算法。 其實施過程如下:
1) 設置多個就緒隊列,並為各個隊列賦予不同的優先順序。在優先權越高的隊列中, 為每個進程所規定的執行時間片就越小。
2) 當一個新進程進入內存後,首先放入第一隊列的末尾,按FCFS原則排隊等候調度。 如果他能在一個時間片中完成,便可撤離;如果未完成,就轉入第二隊列的末尾,在同樣等待調度…… 如此下去,當一個長作業(進程)從第一隊列依次將到第n隊列(最後隊列)後,便按第n隊列時間片輪轉運行。
3) 僅當第一隊列空閑時,調度程序才調度第二隊列中的進程運行;僅當第1到第(i-1)隊列空時, 才會調度第i隊列中的進程運行,並執行相應的時間片輪轉。
4) 如果處理機正在處理第i隊列中某進程,又有新進程進入優先權較高的隊列, 則此新隊列搶占正在運行的處理機,並把正在運行的進程放在第i隊列的隊尾。

祝你好運!

⑦ 進程和程序的區別有哪幾個方面

進程與程序的主要區別:

(1)程序是永存的,進程是暫時的,是程序在數據集上的一次執行,有創建有撤銷,存在是暫時的。

(2)程序是靜態的觀念,進程是動態的觀念。

(3)進程具有並發性,而程序沒有。

(4)進程是競爭計算機資源的基本單位,程序不是。

進程的調度演算法

實時系統中:FIFO(First Input First Output,先進先出演算法),SJF(Shortest Job First,最短作業優先演算法),SRTF(Shortest Remaining Time First,最短剩餘時間優先演算法)。

互動式系統中:RR(Round Robin,時間片輪轉演算法),HPF(Highest Priority First,最高優先順序演算法),多級隊列,最短進程優先,保證調度,彩票調度,公平分享調度。

⑧ 進程調度演算法模擬程序設計

這么有技術含量的問題,應該要更有技術含量的回答,你給個30分懸賞,高手都不睬你~!

⑨ 幾種進程調度演算法分析

前兩天做操作系統作業的時候學習了一下幾種進程調度演算法,在思考和討論後,有了一些自己的想法,現在就寫出來,跟大家討論下。 ,或者說只有有限的CPU資源,當系統中有多個進程處於就緒狀態,要競爭CPU資源時,操作系統就要負責完成如何分配資源的任務。在操作系統中,由調度程序來完成這一選擇分配的工作,調度程序所使用的演算法即是調度演算法。調度演算法需要考慮的指標主要有盡量保證CPU資源分配的公平性;按照一定策略強制執行演算法調度;平衡整個計算機系統,盡量保持各個部分都處於忙碌狀態。而根據系統各自不同的特點和要求,調度演算法又有一些側重點和目標不同,因此,演算法按照系統差異主要分為三大類: 批處理系統中的調度演算法, 代表調度演算法有:先來先服務、最短作業優先、最短剩餘時間優先。 互動式系統中的調度演算法, 代表調度演算法有:輪轉調度、優先順序調度、多級隊列、最短進程優先、保證調度、彩票調度、公平分享調度。 實時系統中的調度演算法 ,代表調度演算法有:速率單調調度、最早最終時限優先調度。 下面就上述提到的調度演算法中挑出幾個進行重點分析:保證調度保證調度是指利用演算法向用戶做出明確的性能保證,然後盡力按照此保證實現CPU的資源分配。利用這種演算法,就是定一個進程佔用CPU的時間的標准,然後按照這個標准去比較實際佔用CPU的時間,調度進程每次使離此標准最遠的進程得到資源,不斷滿足離所保證的標准最遠的進程,從而平衡資源分配滿足這個標準的要求。 保證調度演算法的優點是:能很好的保證進程公平的CPU份額,當系統的特點是:進程的優先順序沒有太大懸殊,所制定的保證標准差異不大,各個進程對CPU的要求較為接近時,比如說系統要求n個進程中的每個進程都只佔用1/n的CPU資源,利用保證調度可以很容易的實現穩定的CPU分配要求。但缺點是,這種情況太過理想,當系統的各個進程對CPU要求的緊急程度不同,所制定的保證較為復雜的時候,這個演算法實現起來比較困難。 彩票調度彩票調度這種演算法的大意是指向進程提供各種系統資源如CPU資源的彩票,當系統需要做出調度決策時,隨機抽出一張彩票,由此彩票的擁有者獲得資源。在彩票調度系統中,如果有一個新的進程出現並得到一些彩票,那麼在下一次的抽獎中,該進程會有同它持有彩票數量成正比例的機會贏得獎勵。進程持有的彩票數量越多,則被抽中的可能性就越大。調度程序可以通過控制進程的彩票持有數量來進行調度。 彩票調度有很多優點:首先,它很靈活,系統增加分給某個進程的彩票數量,就會大大增加它佔用資源的可能性,可以說,彩票調度的反應是迅速的,而快速響應需求正是互動式系統的一個重要要求。其次,彩票調度演算法中,進程可以交換彩票,這個特點可以更好的保證系統的平衡性,使其各個部分都盡可能的處於忙碌狀態。而且利用彩票調度還可以解決許多別的演算法很難解決的問題,例如可以根據特定的需要大致成比例的劃分CPU的使用。 速率單調調度 速率單調調度演算法是一種可適用於可搶占的周期性進程的經典靜態實時調度演算法。當實時系統中的進程滿足:每個周期性進程必須在其周期內完成,且進程之間沒有相互依賴的關系,每個進程在一次突發中需要相同的CPU時間量,非周期的進程都沒有最終時限四個條件時,並且為了建模方便,我們假設進程搶占即刻發生沒有系統開銷,可以考慮利用速率單調演算法。 速率單調調度演算法是將進程的速率(按照進程周期所算出的每秒響應的次數)賦為優先順序,則保證了優先順序與進程速率成線性關系,這即是我們所說的速率單調。調度程序每次運行優先順序最高的,只要優先順序較高的程序需要運行,則立即搶占優先順序低的進程,而優先順序較低的進程必須等所有優先順序高於它的進程結束後才能運行。 速率單調調度演算法可以保證系統中最關鍵的任務總是得到調度,但是缺點是其作為一種靜態演算法,靈活性不夠好,當進程數變多,系統調度變得復雜時,可能不能較好的保證進程在周期內運行。 最早最終時限優先調度 最早最終時限優先調度演算法是一個動態演算法,不要求進程是周期性的,只要一個進程需要CPU時間,它就宣布它的到來時間和最終時限。調度程序維持一個可運行的進程列表,按最終時限排序,每次調度一個最終時限最早的進程得到CPU 。當新進程就緒時,系統檢查其最終時限是否在當前運行的進程結束之前,如果是,則搶占當前進程。 由於是動態演算法,最早最終優先調度的優點就是靈活,當進程數不超過負載時,資源分配更優,但也同樣由於它的動態屬性,進程的優先順序都是在不斷變化中的,所以也沒有哪個進程是一定可以保證滿足調度的,當進程數超過負載時,資源分配合理度會急速下降,所以不太穩定。

⑩ 操作系統中三個進程,輸入計算列印。寫出同步演算法

操作系統中三個進程,輸入計算列印。寫出同步演算法
一、單項選擇題(每題1分,共20分) 1.操作系統的發展過程是( C )

C、管理程序,原始操作系統,操作系統

2.用戶程序中的輸入、輸出操作實際上是由(B、操作系統 )完成。

3.進程調度的對象和任務分別是( C )。

C、進程,從就緒隊列中按一定的調度策略選擇一個進程佔用CPU 4.支持程序浮動的地址轉換機制是( A、動態重定位 )

熱點內容
實況足球安卓如何改密碼 發布:2024-11-08 06:32:47 瀏覽:30
安卓微信不小心刪了如何找回聊天記錄 發布:2024-11-08 06:32:47 瀏覽:246
安卓手機應用怎麼設置到主屏幕 發布:2024-11-08 06:32:43 瀏覽:272
java核心源碼 發布:2024-11-08 06:27:49 瀏覽:394
壓縮降溫空氣 發布:2024-11-08 06:27:41 瀏覽:202
如何將vue頁面部署到伺服器 發布:2024-11-08 06:26:12 瀏覽:292
今日頭條里的音頻怎麼緩存 發布:2024-11-08 06:25:18 瀏覽:47
黑群暉存儲空間只讀 發布:2024-11-08 06:05:59 瀏覽:579
為什麼微信安卓發不出長視頻 發布:2024-11-08 06:03:35 瀏覽:267
top命令linux 發布:2024-11-08 06:00:41 瀏覽:57