免疫優化演算法
A. 免疫優化演算法英文文獻
知網 或萬方可以找到
B. 免疫演算法的提出
在生命科學領域中,人們已經對遺傳(Heredity)與免疫(Immunity)等自然現象進行了廣泛深入的研究。六十年代Bagley和Rosenberg等先驅在對這些研究成果進行分析與理解的基礎上,借鑒其相關內容和知識,特別是遺傳學方面的理論與概念,並將其成功應用於工程科學的某些領域,收到了良好的效果。時至八十年代中期,美國Michigan大學的Hollan教授不僅對以前的學者們提出的遺傳概念進行了總結與推廣,而且給出了簡明清晰的演算法描述,並由此形成目前一般意義上的遺傳演算法(GeneticAlgorithm)GA。由於遺傳演算法較以往傳統的搜索演算法具有使用方便、魯棒性強、便於並行處理等特點,因而廣泛應用於組合優化、結構設計、人工智慧等領域。另一方面,Farmer和Bersini等人也先後在不同時期、不同程度地涉及到了有關免疫的概念。遺傳演算法是一種具有生成+檢測 (generate and test)的迭代過程的搜索演算法。從理論上分析,迭代過程中,在保留上一代最佳個體的前提下,遺傳演算法是全局收斂的。然而,在對演算法的實施過程中不難發現兩個主要遺傳運算元都是在一定發生概率的條件下,隨機地、沒有指導地迭代搜索,因此它們在為群體中的個體提供了進化機會的同時,也無可避免地產生了退化的可能。在某些情況下,這種退化現象還相當明顯。另外,每一個待求的實際問題都會有自身一些基本的、顯而易見的特徵信息或知識。然而遺傳演算法的交叉和變異運算元卻相對固定,在求解問題時,可變的靈活程度較小。這無疑對演算法的通用性是有益的,但卻忽視了問題的特徵信息對求解問題時的輔助作用,特別是在求解一些復雜問題時,這種忽視所帶來的損失往往就比較明顯了。實踐也表明,僅僅使用遺傳演算法或者以其為代表的進化演算法,在模仿人類智能處理事物的能力方面還遠遠不足,還必須更加深層次地挖掘與利用人類的智能資源。從這一點講,學習生物智能、開發、進而利用生物智能是進化演算法乃至智能計算的一個永恆的話題。所以,研究者力圖將生命科學中的免疫概念引入到工程實踐領域,藉助其中的有關知識與理論並將其與已有的一些智能演算法有機地結合起來,以建立新的進化理論與演算法,來提高演算法的整體性能。基於這一思想,將免疫概念及其理論應用於遺傳演算法,在保留原演算法優良特性的前提下,力圖有選擇、有目的地利用待求問題中的一些特徵信息或知識來抑制其優化過程中出現的退化現象,這種演算法稱為免疫演算法(ImmuneAlgorithm)IA。下面將會給出演算法的具體步驟,證明其全局收斂性,提出免疫疫苗的選擇策略和免疫運算元的構造方法,理論分析和對TSP問題的模擬結果表明免疫演算法不僅是有效的而且也是可行的,並較好地解決了遺傳演算法中的退化問題。
C. IA優化演算法是什麼
IA優化演算法指的是免疫演算法是模仿生物免疫機制,結合基因的進化機理,人工構造出的一種新型智能優化演算法。它具有一般免疫系統的特徵,採用群體搜索策略,通過迭代計算,最終以較大的概率得到問題的最優解。
相比較於其他演算法,免疫演算法利用自身產生多樣性和維持機制的特點,保證了種群的多樣性,克服了一般尋優過程(特別是多峰值的尋優過程)中不可避免的「早熟」問題,可以求得全局最優解。免疫演算法具有自適應性、隨機性、並行性、全局收斂性、種群多樣性等優點。
免疫演算法主要模塊:
抗原識別與初始抗體產生。根據待優化問題的特點設計合適的抗體編碼規則,並在此編碼規則下利用問題的先驗知識產生初始抗體種群。
抗體評價。對抗體的質量進行評價,評價准則主要為抗體親和度和個體濃度,評價得出的優質抗體將進行進化免疫操作,劣質抗體將會被更新。
免疫操作。利用免疫選擇、克隆、變異、克隆抑制、種群刷新等運算元模擬生物免疫應答中的各種免疫操作,形成基於生物免疫系統克隆選擇原理的進化規則和方法,實現對各種最優化問題的尋優搜索。
D. 概率搜索演算法有哪些,除了遺傳演算法和蟻群演算法
智能優化演算法分為進化演算法,群智能演算法等
遺傳演算法屬於進化演算法,其中還有進化策略,進化規劃等
蟻群演算法屬於群智能優化演算法,其中還有微粒群演算法,魚群演算法,猴群演算法等
免疫演算法也屬於智能優化演算法,基於生物免疫系統機理
模擬退火演算法是否屬於智能優化演算法尚不明確,一般可以認為是
神經網路也是智能優化演算法的一種
E. 李士勇的研究方向
1、模糊控制:基於非線性科學的模糊控制系統穩定性分析;復雜系統意義下的模糊控制理論與應用;衛星姿態的模糊控制;造紙過程的計算機模糊控制。2、神經網路:模糊神經網路控制,基於神經網路的智能預測控制等。3、智能控制:智能控制系統設計,智能控制系統的定性定量綜合集成推理,多機並行競爭協調綜合智能控制理論與實現技術。4、智能優化演算法:遺傳演算法,免疫優化演算法,蟻群演算法。5、粗糙集理論及在智能信息處理與決策中的應用。
F. 免疫演算法的多樣性評價對文章的優化問題有何意義
生物免疫系統的多樣性!適應性及免疫記憶等特性正越來越引起人們的關注目前已提出了一些
基於免疫概念的優化演算法本文詳細地討論了多種基於免疫概念的優化演算法指出這些方法是免疫信息機理與遺傳演算法相結合的產物最後提出了免疫優化演算法的發展前景
如果你對這個答案有什麼疑問,請追問,
另外如果你覺得我的回答對你有所幫助,請千萬別忘記採納喲!
G. matlab智能演算法30個案例分析中第十二章免疫優化演算法在物流配送中心選址的應用
罰函數是把約束條件變成目標函數一部分的一種方法,系數4是隨意取的,當然這個要根據實際情況,一般和你的目標函數在一個數量級上即可。如果系數取大了,那麼不同的自變數使得目標函數的值不同就表現不出來,如果取小了,反應不出約束條件的第一重要性。
H. 什麼是智能優化演算法
群體智能優化演算法是一類基於概率的隨機搜索進化演算法,各個演算法之間存在結構、研究內容、計算方法等具有較大的相似性。因此,群體智能優化演算法可以建立一個基本的理論框架模式:
Step1:設置參數,初始化種群;
Step2:生成一組解,計算其適應值;
Step3:由個體最有適應著,通過比較得到群體最優適應值;
Step4:判斷終止條件示否滿足?如果滿足,結束迭代;否則,轉向Step2;
各個群體智能演算法之間最大不同在於演算法更新規則上,有基於模擬群居生物運動步長更新的(如PSO,AFSA與SFLA),也有根據某種演算法機理設置更新規則(如ACO)。
(8)免疫優化演算法擴展閱讀
優化演算法有很多,經典演算法包括:有線性規劃,動態規劃等;改進型局部搜索演算法包括爬山法,最速下降法等,模擬退火、遺傳演算法以及禁忌搜索稱作指導性搜索法。而神經網路,混沌搜索則屬於系統動態演化方法。
優化思想裡面經常提到鄰域函數,它的作用是指出如何由當前解得到一個(組)新解。其具體實現方式要根據具體問題分析來定。
I. 免疫演算法最優化問題交叉變異運算元一般取多大
一般交叉和變異的概率是分開取的,而且要看目標函數究竟有多復雜,通常交叉運算元的概率可以取0.7~0.9之間,如果採用實數編碼,建議取大一點,變異運算元主要取決於函數的局部最優解是不是非常多,如果是的話,可以將變異運算元的概率取到0.3,通常是0.01~0.1的變異概率。到底取多少還是要看目標函數以及想要的收斂速度。
J. 使用遺傳演算法和免疫演算法的優化結果是否有差別
遺傳演算法是一種智能計算方法,針對不同的實際問題可以設計不同的計算程序。它主要有復制,交叉,變異三部分完成,是仿照生物進化過程來進行計算方法的設計。 模糊數學是研究現實生活中一類模糊現象的數學。簡單地說就是像好與壞怎樣精確的描述,將好精確化,用數字來表達。 神經網路是一種仿生計算方法,仿照生物體中信息的傳遞過程來進行數學計算。 這三種知識都是近40年興起的新興學科,主要應用在智能模糊控制上面。這三者可以結合起來應用。如用模糊數學些遺傳演算法的程序,優化神經網路,最後用神經網路控制飛行器或其他物體