演算法的方法
① 什麼叫演算法演算法有哪幾種表示方法
演算法(Algorithm)是指解題方案的准確而完整的描述,是一系列解決問題的清晰指令,演算法代表著用系統的方法描述解決問題的策略機制。計算機科學家往往將「演算法」一詞的含義限定為此類「符號演算法」。「演算法」概念的初步定義:一個演算法是解決一個問題的進程。而並不需要每次都發明一個解決方案。
已知的演算法有很多,例如「分治法」、「枚舉測試法」、「貪心演算法」、「隨機演算法」等。
(1)演算法的方法擴展閱讀
演算法中的「分治法」
「分治法」是把一個復雜的問題拆分成兩個較為簡單的子問題,進而兩個子問題又可以分別拆分成另外兩個更簡單的子問題,以此類推。問題不斷被層層拆解。然後,子問題的解被逐層整合,構成了原問題的解。
高德納曾用過一個郵局分發信件的例子對「分治法」進行了解釋:信件根據不同城市區域被分進不同的袋子里;每個郵遞員負責投遞一個區域的信件,對應每棟樓,將自己負責的信件分裝進更小的袋子;每個大樓管理員再將小袋子里的信件分發給對應的公寓。
② 演算法怎麼學
貪心演算法的定義:
貪心演算法是指在對問題求解時,總是做出在當前看來是最好的選擇。也就是說,不從整體最優上加以考慮,只做出在某種意義上的局部最優解。貪心演算法不是對所有問題都能得到整體最優解,關鍵是貪心策略的選擇,選擇的貪心策略必須具備無後效性,即某個狀態以前的過程不會影響以後的狀態,只與當前狀態有關。
解題的一般步驟是:
1.建立數學模型來描述問題;
2.把求解的問題分成若干個子問題;
3.對每一子問題求解,得到子問題的局部最優解;
4.把子問題的局部最優解合成原來問題的一個解。
如果大家比較了解動態規劃,就會發現它們之間的相似之處。最優解問題大部分都可以拆分成一個個的子問題,把解空間的遍歷視作對子問題樹的遍歷,則以某種形式對樹整個的遍歷一遍就可以求出最優解,大部分情況下這是不可行的。貪心演算法和動態規劃本質上是對子問題樹的一種修剪,兩種演算法要求問題都具有的一個性質就是子問題最優性(組成最優解的每一個子問題的解,對於這個子問題本身肯定也是最優的)。動態規劃方法代表了這一類問題的一般解法,我們自底向上構造子問題的解,對每一個子樹的根,求出下面每一個葉子的值,並且以其中的最優值作為自身的值,其它的值舍棄。而貪心演算法是動態規劃方法的一個特例,可以證明每一個子樹的根的值不取決於下面葉子的值,而只取決於當前問題的狀況。換句話說,不需要知道一個節點所有子樹的情況,就可以求出這個節點的值。由於貪心演算法的這個特性,它對解空間樹的遍歷不需要自底向上,而只需要自根開始,選擇最優的路,一直走到底就可以了。
話不多說,我們來看幾個具體的例子慢慢理解它:
1.活動選擇問題
這是《演算法導論》上的例子,也是一個非常經典的問題。有n個需要在同一天使用同一個教室的活動a1,a2,…,an,教室同一時刻只能由一個活動使用。每個活動ai都有一個開始時間si和結束時間fi 。一旦被選擇後,活動ai就占據半開時間區間[si,fi)。如果[si,fi]和[sj,fj]互不重疊,ai和aj兩個活動就可以被安排在這一天。該問題就是要安排這些活動使得盡量多的活動能不沖突的舉行。例如下圖所示的活動集合S,其中各項活動按照結束時間單調遞增排序。
關於貪心演算法的基礎知識就簡要介紹到這里,希望能作為大家繼續深入學習的基礎。
③ 演算法等同於計算方法
演算法不等同於計算方法。
演算法的定義為解決問題確定的方法和有限的步驟。
而演算法分為兩大類:數值運算演算法和非數值運算演算法。計算方法中並不包括非數值運算演算法,因此演算法不等同於計算方法,當然啦 這是在計算機學中的定義,不同地方將有不同的意義,若是僅僅談數學上的演算法,確實與計算方法相似。
純手打,希望能幫到你~
④ 演算法的四種描述方法是什麼
#include<stdio.h>
#include<time.h>
#include<math.h>
#include<malloc.h>
void BubbleSort(int *L,int N)
{ //冒泡
int i,j;
int t;
for(i=1;i<=N;i++)
{
for(j=N;j>i;j--)
if(L[j]<L[j-1])
{
t=L[j];
L[j]=L[j-1];
L[j-1]=t;
}
}
}
int SelectMinKey(int *L,int N,int n)
{
int i,min=n;
for(i=n+1;i<=N;i++)
if(L[i]<L[min])
min=i;
return min;
}
void SelectSort(int *L,int N)
{ //選擇
int i,j;
int t;
for(i=1;i<N;i++)
{
j=SelectMinKey(L,N,i);
if(i!=j)
{
t=L[i];
L[i]=L[j];
L[j]=t;
}
}
}
void InsertSort(int *L,int N)
{ //插入
int i,j;
for(i=2;i<=N;i++)
{
if(L[i]<L[i-1])
{
L[0]=L[i];
L[i]=L[i-1];
for(j=i-2;L[0]<L[j];j--)
L[j+1]=L[j];
L[j+1]=L[0];
}
}
}
void ShellInsert(int *L,int N, int dk)
{ // 對順序表L作一趟希爾插入排序。本演算法對演算法10.1作了以下修改:
// 1. 前後記錄位置的增量是dk,而不是1;
// 2. r[0]只是暫存單元,不是哨兵。當j<=0時,插入位置已找到。
int i,j;
for(i=dk+1;i<=N;++i)
if(L[i]<L[i-dk])
{ // 需將L.r[i]插入有序增量子表
L[0]=L[i]; // 暫存在L.r[0]
for(j=i-dk;(j>0&&L[0]<L[j]);j-=dk)
L[j+dk]=L[j]; // 記錄後移,查找插入位置
L[j+dk]=L[0]; // 插入
}
} // ShellInsert
void ShellSt(int *L,int N, int dlta[], int t)
{ // 演算法10.5
// 按增量序列dlta[0..t-1]對順序表L作希爾排序。
for(int k=0;k<t;++k)
ShellInsert(L,N, dlta[k]); // 一趟增量為dlta[k]的插入排序
} // ShellSort
void ShellSort(int *L,int N)
{ //希爾
int t=(int)log(N);
int k,*dlta;
dlta=(int*)malloc(t*4); //產生增量序列
for(k=0;k<t;k++)
dlta[k]=(int)pow(2,t-k)-1;
ShellSt(L,N,dlta,t);
}
int main()
{
int N=250;
int i,j,k;
int t;
int ti[16];
int *L;
srand(time(NULL));
printf("長度\t|冒泡\t|選擇\t|插入\t|希爾\n");
printf("--------+-------------------------------------------------------------");
for(j=0;N<100000;j++)
{
L=(int *)malloc((N+1)*4);
t=0;
for(i=1;i<=N;i++)
L[i]=rand();
ti[t++]=clock();
BubbleSort(L,N);
ti[t++]=clock();
for(i=1;i<=N;i++)
L[i]=rand();
ti[t++]=clock();
SelectSort(L,N);
ti[t++]=clock();
for(i=1;i<=N;i++)
L[i]=rand();
ti[t++]=clock();
InsertSort(L,N);
ti[t++]=clock();
for(i=1;i<=N;i++)
L[i]=rand();
ti[t++]=clock();
ShellSort(L,N);
ti[t++]=clock();
printf("\n%d\t",N);
for(k=0;k<4;k++)
printf("| %d\t",(ti[2*k+1]-ti[2*k]));
N*=5;
}
printf("\n\n");
}
//這是我們當年學數據結構時我自己寫的,給你改了一下,輸出是對隨機產生一些數,對四種演算法進行比較,有問題可以hi我啊
另外,站長團上有產品團購,便宜有保證
⑤ 演算法是不是一種計算方法
思路解析: 演算法是解決某類問題的一系列步驟或程序,只要按照這些步驟執行,都能使問題得到解決.A選項顯然是不正確的;B選項錯在「判斷一個數是否是一個素數的方法」僅是一個解決某一問題的演算法,但不是演算法的定義;C選項錯在並不是所有的程序能夠解決問題. 答案: D
⑥ 演算法的描述方式有幾種分別是什麼
描述演算法的方法有多種,常用的有自然語言、結構化流程圖、偽代碼和PAD圖等,其中最普遍的是流程圖,分思法。
流程圖(Flow Chart)使用圖形表示演算法的思路是一種極好的方法,因為千言萬語不如一張圖。流程圖在匯編語言和早期的BASIC語言環境中得到應用。相關的還有一種PAD圖,對PASCAL或C語言都極適用。
(6)演算法的方法擴展閱讀:
演算法可以宏泛的分為三類:
一、有限的,確定性演算法 這類演算法在有限的一段時間內終止。他們可能要花很長時間來執行指定的任務,但仍將在一定的時間內終止。這類演算法得出的結果常取決於輸入值。
二、有限的,非確定演算法 這類演算法在有限的時間內終止。然而,對於一個(或一些)給定的數值,演算法的結果並不是唯一的或確定的。
三、無限的演算法 是那些由於沒有定義終止定義條件,或定義的條件無法由輸入的數據滿足而不終止運行的演算法。通常,無限演算法的產生是由於未能確定的定義終止條件。
⑦ 什麼是演算法
演算法,簡單一點說就是計算的方法,比如計算兩個整數相加的方法,即兩數相加的【演算法】就是從右向左依次相加各位。
嚴格來說的話,在數學和計算機科學之中,演算法(Algorithm)為一個計算的具體步驟,常用於計算、數據處理和自動推理。精確而言,演算法是一個表示為有限長列表的有效方法。演算法應包含清晰定義的指令用於計算函數 。(本段來自網路:http://ke..com/view/7420.htm)
⑧ 演算法的概念
演算法(Algorithm)是解題的步驟,可以把演算法定義成解一確定類問題的任意一種特殊的方法。在計算機科學中,演算法要用計算機演算法語言描述,演算法代表用計算機解一類問題的精確、有效的方法。演算法+數據結構=程序,求解一個給定的可計算或可解的問題,不同的人可以編寫出不同的程序,來解決同一個問題,這里存在兩個問題:一是與計算方法密切相關的演算法問題;二是程序設計的技術問題。演算法和程序之間存在密切的關系。
演算法是一組有窮的規則,它們規定了解決某一特定類型問題的一系列運算,是對解題方案的准確與完整的描述。制定一個演算法,一般要經過設計、確認、分析、編碼、測試、調試、計時等階段。
對演算法的學習包括五個方面的內容:① 設計演算法。演算法設計工作是不可能完全自動化的,應學習了解已經被實踐證明是有用的一些基本的演算法設計方法,這些基本的設計方法不僅適用於計算機科學,而且適用於電氣工程、運籌學等領域;② 表示演算法。描述演算法的方法有多種形式,例如自然語言和演算法語言,各自有適用的環境和特點;③確認演算法。演算法確認的目的是使人們確信這一演算法能夠正確無誤地工作,即該演算法具有可計算性。正確的演算法用計算機演算法語言描述,構成計算機程序,計算機程序在計算機上運行,得到演算法運算的結果;④ 分析演算法。演算法分析是對一個演算法需要多少計算時間和存儲空間作定量的分析。分析演算法可以預測這一演算法適合在什麼樣的環境中有效地運行,對解決同一問題的不同演算法的有效性作出比較;⑤ 驗證演算法。用計算機語言描述的演算法是否可計算、有效合理,須對程序進行測試,測試程序的工作由調試和作時空分布圖組成。
⑨ D*演算法的其他方法
3.用A*或其它演算法計算,這里假設用A*演算法,遍歷Y的子節點,點放入CLOSE,調整Y的子節點a的h值,h(a)=h(Y)+Y到子節點a的權重C(Y,a),比較a點是否存在於OPEN和CLOSE中,方法如下:
while()
{
從OPEN表中取k值最小的節點Y;
遍歷Y的子節點a,計算a的h值 h(a)=h(Y)+Y到子節點a的權重C(Y,a)
{
if(a in OPEN) 比較兩個a的h值
if( a的h值小於OPEN表a的h值 )
{更新OPEN表中a的h值;k值取最小的h值
有未受影響的最短路經存在
break;
}
if(a in CLOSE) 比較兩個a的h值 //注意是同一個節點的兩個不同路徑的估價值
if( a的h值小於CLOSE表的h值 )
{
更新CLOSE表中a的h值; k值取最小的h值;將a節點放入OPEN表
有未受影響的最短路經存在
break;
}
if(a not in both)
將a插入OPEN表中;//還沒有排序
}
放Y到CLOSE表;
OPEN表比較k值大小進行排序;
}
機器人利用第一步Dijstra計算出的最短路信息從a點到目標點的最短路經進行。
D*演算法在動態環境中尋路非常有效,向目標點移動中,只檢查最短路徑上下一節點或臨近節點的變化情況,如機器人尋路等情況。對於距離遠的最短路徑上發生的變化,則感覺不太適用。