一次擬合演算法
『壹』 excel曲線擬合採用的演算法
最小二乘法是一種數學方法,用於曲線擬合.二乘,就是平方,是早年翻譯的沿用.
當在實驗中獲得自變數與因變數的一系列對應數據,(x1,y1),(x2,y2),(x3,y3),...(xn,yn)時,要找出一個已知類型的函數,y=f(x) ,與之擬合,使得實際數據和理論曲線的離差平方和:∑[yi-f(xi)]^2(從i=1到i=n相加)為最小.
這種求f(x)的方法,叫做最小二乘法。
求得的函數y=f(x)常稱為經驗公式,在工程技術和科學研究的數據處理中廣泛使用.最普遍的是直線(一次曲線)擬合,在現代質量管理上,對散布圖的相關分析上也用此法.
是否可以解決您的問題?
『貳』 曲線擬合 快速演算法
這個用萊布尼茲法就行了。
舉例:
已知
f(1)
f(5)
f(9)
則
三次多項式為:
f(1)(x-5)(x-9)/(1-5)(1-9)+f(5)(x-1)(x-9)/(5-1)(x-9)+f(9)(x-1)(x-5)/(9-1)(9-5)
『叄』 線性回歸和一次曲線擬合的區別
第一個是一次曲線擬合。
第二個既然是「二次方程」,那就是二次曲線擬合。類似地,用三次方程表示就是三次曲線擬合;用指數就是指數曲線擬合……
線性回歸和一次曲線擬合沒有區別。
『肆』 曲線擬合的方法
用Matlab進行曲線擬合步驟:
一、 單一變數的曲線逼近
Matlab有一個功能強大的曲線擬合工具箱 cftool ,使用方便,能實現多種類型的線性、非線性曲線擬合。下面結合我使用的 Matlab R2007b 來簡單介紹如何使用這個工具箱。
假設我們要擬合的函數形式是 y=A*x*x + B*x, 且A>0,B>0 。
1、在命令行輸入數據:
》x=[110.3323 148.7328 178.064 202.8258033 224.7105 244.5711 262.908 280.0447 296.204 311.5475];
》y=[5 10 15 20 25 30 35 40 45 50];
2、啟動曲線擬合工具箱 》cftool
3、進入曲線擬合工具箱界面「Curve Fitting tool」 (1)點擊「Data」按鈕,彈出「Data」窗口;
(2)利用X data和Y data的下拉菜單讀入數據x,y,可修改數據集名「Data set name」,然後點擊「Create data set」按鈕,退出「Data」窗口,返回工具箱界面,這時會自動畫出數據集的曲線圖;
(3)點擊「Fitting」按鈕,彈出「Fitting」窗口;
(4)點擊「New fit」按鈕,可修改擬合項目名稱「Fit name」,通過「Data set」下拉菜單選擇數據集,然後通過下拉菜單「Type of fit」選擇擬合曲線的類型,工具箱提供的擬合類型有: Custom Equations:用戶自定義的函數類型
Exponential:指數逼近,有2種類型, a*exp(b*x) 、 a*exp(b*x) + c*exp(d*x) Fourier:傅立葉逼近,有7種類型,基礎型是 a0 + a1*cos(x*w) + b1*sin(x*w) Gaussian:高斯逼近,有8種類型,基礎型是 a1*exp(-((x-b1)/c1)^2)
Interpolant:插值逼近,有4種類型,linear、nearest neighbor、cubic spline、shape-preserving
Polynomial:多形式逼近,有9種類型,linear ~、quadratic ~、cubic ~、4-9th degree ~
Power:冪逼近,有2種類型,a*x^b 、a*x^b + c
Rational:有理數逼近,分子、分母共有的類型是linear ~、quadratic ~、cubic ~、4-5th degree ~;此外,分子還包括constant型
Smoothing Spline:平滑逼近(翻譯的不大恰當,不好意思)
Sum of Sin Functions:正弦曲線逼近,有8種類型,基礎型是 a1*sin(b1*x + c1) Weibull:只有一種,a*b*x^(b-1)*exp(-a*x^b)
選擇好所需的擬合曲線類型及其子類型,並進行相關設置:
——如果是非自定義的類型,根據實際需要點擊「Fit options」按鈕,設置擬合演算法、修改待估計參數的上下限等參數;
——如果選Custom Equations,點擊「New」按鈕,彈出自定義函數等式窗口,有「Linear Equations線性等式」和「General Equations構造等式」兩種標簽。
在本例中選Custom Equations,點擊「New」按鈕,選擇「General Equations」標簽,輸入函數類型y=a*x*x + b*x,設置參數a、b的上下限,然後點擊OK。
(5)類型設置完成後,點擊「Apply」按鈕,就可以在Results框中得到擬合結果,如下例: general model: f(x) = a*x*x+b*x
Coefficients (with 95% confidence bounds): a = 0.009194 (0.009019, 0.00937) b = 1.78e-011 (fixed at bound)
Goodness of fit: SSE: 6.146 R-square: 0.997
Adjusted R-square: 0.997 RMSE: 0.8263
同時,也會在工具箱窗口中顯示擬合曲線。
這樣,就完成一次曲線擬合啦,十分方便快捷。當然,如果你覺得擬合效果不好,還可以在「Fitting」窗口點擊「New fit」按鈕,按照步驟(4)~(5)進行一次新的擬合。
不過,需要注意的是,cftool 工具箱只能進行單個變數的曲線擬合,即待擬合的公式中,變數只能有一個。對於混合型的曲線,例如 y = a*x + b/x ,工具箱的擬合效果並不好。下一篇文章我介紹幫同學做的一個非線性函數的曲線擬合。