截面資料庫
『壹』 截面數據怎麼補
l.varname表示滯後一階,l2.varname表示滯後二階,以此類推
下面是更多方法:
(一)個案剔除法
最常見、最簡單的處理缺失數據的方法是用個案剔除法也是很多統計軟體(如SPSS和SAS)默認的缺失值處理方法。在這種方法中如果任何一個變數含有缺失數據的話,就把相對應的個案從分析中剔除。如果缺失值所佔比例比較小的話,這一方法十分有效。至於具體多大的缺失比例算是「小」比例,專家們意見也存在較大的差距。有學者認為應在5%以下,也有學者認為20%以下即可。然而,這種方法卻有很大的局限性。它是以減少樣本量來換取信息的完備,會造成資源的大量浪費,丟棄了大量隱藏在這些對象中的信息。在樣本量較小的情況下,刪除少量對象就足以嚴重影響到數據的客觀性和結果的正確性。因此,當缺失數據所佔比例較大,特別是當缺數據非隨機分布時,這種方法可能導致數據發生偏離,從而得出錯誤的結論。
(二)均值替換法
將變數的屬性分為數值型和非數值型來分別進行處理。如果缺失值是數值型的,就根據該變數在其他所有對象的取值的平均值來填充該缺失的變數值;如果缺失值是非數值型的,就根據統計學中的眾數原理,用該變數在其他所有對象的取值次數最多的值來補齊該缺失的變數值。但這種方法會產生有偏估計,所以並不被推崇。均值替換法也是一種簡便、快速的缺失數據處理方法。使用均值替換法插補缺失數據,對該變數的均值估計不會產生影響。但這種方法是建立在完全隨機缺失(MCAR)的假設之上的,而且會造成變數的方差和標准差變小。
(三)熱卡填充法
對於一個包含缺失值的變數,熱卡填充法在資料庫中找到一個與它最相似的對象,然後用這個相似對象的值來進行填充。不同的問題可能會選用不同的標准來對相似進行判定。最常見的是使用相關系數矩陣來確定哪個變數(如變數Y)與缺失值所在變數(如變數X)最相關。然後把所有個案按Y的取值大小進行排序。那麼變數X的缺失值就可以用排在缺失值前的那個個案的數據來代替了。與均值替換法相比,利用熱卡填充法插補數據後,其變數的標准差與插補前比較接近。但在回歸方程中,使用熱卡填充法容易使得回歸方程的誤差增大,參數估計變得不穩定,而且這種方法使用不便,比較耗時。
(四)回歸替換法
回歸替換法首先需要選擇若干個預測缺失值的自變數,然後建立回歸方程估計缺失值,即用缺失數據的條件期望值對缺失值進行替換。與前述幾種插補方法比較,該方法利用了資料庫中盡量多的信息,而且一些統計軟體(如Stata)也已經能夠直接執行該功能。但該方法也有諸多弊端,第一,這雖然是一個無偏估計,但是卻容易忽視隨機誤差,低估標准差和其他未知性質的測量值,而且這一問題會隨著缺失信息的增多而變得更加嚴重。第二,研究者必須假設存在缺失值所在的變數與其他變數存在線性關系,很多時候這種關系是不存在的。
(五)多重替代法
首先,多重估算技術用一系列可能的值來替換每一個缺失值,以反映被替換的缺失數據的不確定性。然後,用標準的統計分析過程對多次替換後產生的若干個數據集進行分析。最後,把來自於各個數據集的統計結果進行綜合,得到總體參數的估計值。由於多重估算技術並不是用單一的值來替換缺失值,而是試圖產生缺失值的一個隨機樣本,這種方法反映出了由於數據缺失而導致的不確定性,能夠產生更加有效的統計推斷。結合這種方法,研究者可以比較容易地,在不舍棄任何數據的情況下對缺失數據的未知性質進行推斷。
『貳』 midas civil是什麼軟體…
MIDAS/Civil是個通用的空間有限元分析軟體 有什麼不懂的還可以問我~
『叄』 什麼叫動態資料庫,什麼叫靜態資料庫
靜態數據是基本保持穩定的數據,比如一個單位的名稱、員工信息、系統參數等
動態數據是隨著時間的發展,常常變化的數據,比如日銷售額、年銷售額等等。
在數據分析中具體表現來看就是,如果這個資料庫的數據僅僅只有一個時間節點的,即可理解為靜態數據,又叫做橫截面數據,並且採用靜態數據的分析方法分析即可。
如果該資料庫中的數據包含不同時間進程的,比如時間包含多個月份,或者包含多個年份這樣的數據,就理解為動態數據,又叫縱截面數據,需要採用面板數據分析方法分析
『肆』 如何在STAAD中添加一個截面資料庫
有一種原始的方法,選定一個截面,把這個截面上每個單元的力列出來,把所有單元的垂直與截面的力加起來=總軸力,把所有單元的平行於截面的力加起來=總剪力,把所有單元垂直於截面的力乘以到某個點的距離=總彎矩。說白了就是手算一下積分。不知道新版本的ansys有沒有自動積分的。我很久沒用了。SAP里是有的。其他有限元軟體沒用過。你要是會MATLAB,自己編一個後處理程序好了很簡單哦。
『伍』 midas gen截面資料庫ks與gb什麼意思
ne of thn ourt.". "How pleasant