gaussianface源碼
① 先驅者(5) AI巨頭如何跨界自動駕駛
[汽車之家技術]有這樣一家成立於2014年,旋即成為該領域「獨角獸」的高科技企業,說起它的名字大部分人可能以為是歷史課本某一章節的名稱,但不誇張的說,如今我們幾乎每天都離不開它的產品或技術。它賦予機器超過人類的辨別能力,並且在還會創造出更多來自於科幻小說的未來場景,那麼TA與我們的《先驅者》系列內容又有什麼聯系呢?且聽我娓娓道來。
寫在最後:
往期回顧:
先驅者(4)激光大戰中的中國高端玩家
先驅者(3)中國激光雷達企業逆襲記
先驅者(2)機器視覺領域的中國挑戰者
先驅者(1)一文了解世界自動駕駛格局
② 彩色圖像分割源碼
能不能給我發一份呀?
③ 在like face上面看見了高斯的防曬噴霧好想好好評的,不過不知道是不是正品呢~
oq
468
④ linux gaussian怎麼安裝linda
一、 背景介紹
Gaussian是目前計算化學領域內最流行、應用范圍最廣的商業化量子化學計算程序包。它最早是由美國卡內基梅隆大學的約翰·波普(John A Pople, 1998年諾貝爾化學獎)在60年度末、70年代初主導開發的。其名稱來自於該軟體中所使用的高斯型基組。最初,Gaussian的著作權屬於約翰·波普供職的卡內基梅隆大學;1986年,約翰·波普進入美國西北大學後,其版權由Gaussian,Inc.公司所持有。Gaussian軟體的出現降低了量子化學計算的門檻,使得從頭計算方法可以廣泛使用,從而極大地推動了其在方法學上的進展。
到目前為止,Gaussian已經推出了12個版本,包括Gaussian70、Gaussian76、Gaussian80、Gaussian82、Gaussian86、Gaussian88、Gaussian90、Gaussian92、Gaussian92/DFT、Gaussian94、Gaussian98、Gaussian03等,其版本數字也是該版本發布的年份。其中,每個版本發布後,還陸續發布了一些這些版本的修訂版。目前最新的版本是Gaussian03 Revision D.01/D.02。
Gaussian程序是用FORTRAN語言編寫的,它從量子力學的基本原理出發,可計算能量、分子結構、分子體系的振動頻率以及大量從這些基本計算方法中導出的分子性質。它能用於研究不同條件下的分子和反應,包括穩定的粒子和實驗上難以觀測的化合物,例如瞬時的反應中間物和過渡結構。
Gaussian的並行模式是採用OpenMP來實現的。OPENMP的並行實現是針對共享內存的機器的,實現方法簡單。因此Gaussian在共享內存的機器上,能獲得很好的性能。對於跨節點的計算,Gaussian使用TCP Linda軟體來實現。TCP Linda是一個虛擬共享內存的並行執行環境,它可以把一個通過網路連接的分布式內存的機群或工作站虛擬成共享內存環境,從而使像Gaussian這樣的用OPENMP實現並行的程序能夠在分布式內存的機器上運行。
二、 軟體的安裝設置
1、將壓縮包解開
# tar zxf OPT-900N.taz //g03 E01以上版本支持上海處理器 (可以查看文件日期在2007年以後的)
2、准備環境變數文件g03.sh
放入g03源代碼目錄,如/home/users/mjhe/g03/
#cat g03.sh
g03root="/home/users/mjhe"
GAUSS_SCRDIR="/scratch"
export g03root GAUSS_SCRDIR
. $g03root/g03/bsd/g03.profile
3、准備運行腳本
放入算例目錄,如g03test
> cat g03.pbs
###########################################################################
# Script for submitting parallel Gaussian 03 jobs to Dawning cluster.
# Lines that begin with #PBS are PBS directives (not comments).
# True comments begin with "# " (i,e., # followed by a space).
###########################################################################
#PBS -S /bin/bash
#PBS -N gaussian
#PBS -j oe
#PBS -l nodes=1:ppn=8
##PBS -l walltime=860:00:00
#PBS -V
##PBS -q middle
#############################################################################
# -S: shell the job will run under
# -o: name of the queue error filename
# -j: merges stdout and stderr to the same file
# -l: resources required by the job: number of nodes and processors per node
# -l: resources required by the job: maximun job time length
#############################################################################
INFILE=$file
# Define variable "jobname".
jobname=`echo $INFILE | awk -F. '{printf $1}'`
username=`whoami`
# Define the location where Gaussian was installed and run a setup script, g03.profile.
g03root="/data/users/ceszhcy/"
GAUSS_SCRDIR="/state/partition1/tmp/"
export g03root GAUSS_SCRDIR
. $g03root/g03/bsd/g03.profile
# Make a directory in scr and .com and .g03 file to there.
GAUSS_RUNDIR=${GAUSS_SCRDIR}/${username}.${PBS_JOBID}
if [ ! -a $GAUSS_RUNDIR ]; then
echo "Scratch directory $GAUSS_RUNDIR created."
mkdir -p $GAUSS_RUNDIR
fi
cp $PBS_O_WORKDIR/${jobname}.* $GAUSS_RUNDIR
ORIG_PBS_O_WORKDIR=${PBS_O_WORKDIR}
cd $PBS_O_WORKDIR
# Setup for Gaussian 03:
# =======================
# Make a scratch directory if it doesn't already exist.
GAUSS_SCRDIR=${GAUSS_SCRDIR}/${username}.${PBS_JOBID}/${jobname}
if [ ! -a $GAUSS_SCRDIR ]; then
echo "Scratch directory $GAUSS_SCRDIR created."
mkdir -p $GAUSS_SCRDIR
fi
export GAUSS_SCRDIR
echo "Using $GAUSS_SCRDIR for temporary Gaussian 03 files."
# Define node list
cat $PBS_NODEFILE|uniq > $GAUSS_SCRDIR/tsnet.nodes
NODE_NUM=`cat $PBS_NODEFILE|uniq |wc -l`
NP=`cat $PBS_NODEFILE|wc -l`
nodes=`cat $PBS_NODEFILE |uniq| awk '{printf("%s,",$1)}'`
sharecpu=`expr $NP / $NODE_NUM`
G03_NODEFILE="$GAUSS_SCRDIR/tsnet.nodes"
GAUSS_LFLAGS=" -mp 2 -nodefile $G03_NODEFILE"
export GAUSS_LFLAGS
echo pbs nodefile:
cat $G03_NODEFILE
#Run a Gaussian command file, water03.com, redirecting output to a file, water03.log
cd $GAUSS_RUNDIR
echo "%NProcShared=$sharecpu" > ${jobname}.Input.${PBS_JOBID}
if [ $NODE_NUM -ne 1 ];
then
echo "%LindaWorker=$nodes" >> ${jobname}.Input.${PBS_JOBID}
fi
grep -v nproc $INFILE |grep -v NProcShared |grep -v LindaWorker >>${jobname}.Input.${PBS_JOBID}
echo "Starting Gaussian run at" `date`
if [ $NODE_NUM -eq 1 ];
then
time g03 < ${jobname}.Input.${PBS_JOBID} > $GAUSS_RUNDIR/${jobname}.log
fi
else
time g03l < ${jobname}.Input.${PBS_JOBID} > $GAUSS_RUNDIR/${jobname}.log
fi
#time g03 < ${jobname}.Input.${PBS_JOBID} > ${jobname}.log
echo "Finished Gaussian run at" `date`
PBS_O_WORKDIR=${ORIG_PBS_O_WORKDIR}
echo $PBS_O_WORKDIR
mv $GAUSS_RUNDIR/${jobname}.* $PBS_O_WORKDIR
mv $GAUSS_SCRDIR/*.chk $PBS_O_WORKDIR
echo "$GAUSS_SCRDIR"
rm -Rf $GAUSS_SCRDIR
4、測試安裝是否成功
准備算例test397.com
在算例目錄下修改g03.pbs,然後執行qsub g03.pbs -v file=test397.com
cd ~/g03test
qsub g03.pbs -v file=test397.com
5、其他
三、 注意事項
1、本文命令、代碼和超鏈接採用斜體五號字表示
2、算例文件名必須有兩部分組成,前綴+後綴,中間用 . 隔開
3、需要修改一下兩個文件以適應linda並行時的配置情況:
#vi /data2/home/test/g03/linda7.2/opteron-linux-I8/bin/LindaLauncher
/mf/giovanni/static/g03/linda7.2/opteron-linux-I8/bin/cLindaLauncher
#vi /data2/home/test//g03/ntsnet
/mf/giovanni/static/g03/linda7.2/opteron-linux-I8/bin/true_ntsnet
4、在所以參與計算的節點根目錄上增加/scratch/,並設置開放的許可權
mkdir /scratch
chmod 777 /scratch
5、其他
四、 參考文獻
1 量子化學計算程序包GAUSSIAN 王濤 上海超級計算中心 上海 201203 [email protected]
⑤ 為什麼香港中文大學研發的人臉識別演算法能夠擊敗人類
LFW(Labeled faces in the wild[1])是人臉識別研究領域比較有名的人臉圖像集合,其圖像採集自Yahoo! News,共13233幅圖像,其中5749個人,其中1680人有兩幅及以上的圖像,4069人只有一幅圖像;大多數圖像都是由Viola-Jones人臉檢測器得到之後,被裁剪為固定大小,有少量的人為地從false positive中得到[2]。所有圖像均產生於現實場景(有別於實驗室場景),具備自然的光線,表情,姿勢和遮擋,且涉及人物多為公物人物,這將帶來化妝,聚光燈等更加復雜的干擾因素。因此,在該數據集上驗證的人臉識別演算法,理論上更貼近現實應用,這也給研究人員帶來巨大的挑戰。
⑥ 為什麼香港中文大學研發的人臉識別演算法能夠擊敗人類
1.全面超過人臉時的條件是實驗室內部拍攝條件、正面姿態、正面光照。這種條件下的人臉識別錯誤率的進展大約是每3年下降10倍。FRVT2012中期結果中最好的單位(不出意外應該是日本的NEC公司)的錯誤率已經達到了我們06年系統的1%左右。而我手上的系統相比06年大約提升了十幾倍,目前在中期結果中排名6-7名。
2.lfw資料庫直接是從雅虎網上抓的照片。難度在業界屬於頂尖。該庫09年公布後至今沒有難度更大的靜態照片庫出現。難度相當但數據量更大的庫倒是有兩三個。我們06年的系統跑lfw也就70+的水平。而我們實驗室的最高水平(也是國內除face++外的最高水平)大約是92左右。大概相當於2012年底的state-of-the-art。
3.2014年的三個逆天結果,deepface的97.25%、face++的97.27%、gaussianface的98.52%,前兩者都用了deep learning。第一個訓練數據400萬。第二個演算法細節不明,但deeplearning向來吃樣本,想來訓練庫也是百萬量級。唯有gaussianface的訓練庫僅2萬余。
4.arxiv和CVPR等頂會完全不矛盾。先發上來只是為了不讓別人搶先。估計未來的頂刊頂會上很快會出現這個結果。
5.演算法細節太過技術,難以在這里深入淺出,就不多介紹了。只提一篇paper。Blei的latent dirichlet allocation,2003年的jmlr,引用量近萬。本文對人臉的貢獻方式大概相當於lda對文檔分類的貢獻方式,懂行的人自然知道這句話的分量。當然lda珠玉在前,deep learning風頭正勁,所以真正的歷史地位,本文自然不可能趕上lda。但一篇正常pami的水準肯定是有的。
⑦ 哪裡能搞到Gaussian09的源代碼 source code
正對自己的平台,使用源碼編譯,執行效率比較高。
我對比測試的是G09A01 和G03D02 目前流出的D02是別同通過source code編譯的,
D02計算速度明顯快很多的...
⑧ 在matlab中混入雜訊功率為4W的隨機雜訊的代碼是什麼
M=imread('dl011.jpg') %讀取MATLAB中的名為cameraman的圖像
subplot(3,3,1)
imshow(M) %顯示原始圖像
title('original')
P1=imnoise(M,'gaussian',0.02) %加入高斯躁聲
subplot(3,3,2)
imshow(P1) %加入高斯躁聲後顯示圖像
title('gaussian noise');
P2=imnoise(M,'salt & pepper',0.02) %加入椒鹽躁聲
subplot(3,3,3)
imshow(P2) %%加入椒鹽躁聲後顯示圖像
title('salt & pepper noise');
g=medfilt2(P1) %對高斯躁聲中值濾波
subplot(3,3,5)
imshow(g)
title('medfilter gaussian')
h=medfilt2(P2) %對椒鹽躁聲中值濾波
subplot(3,3,6)
imshow(h)
title('medfilter salt & pepper noise')
l=[1 1 1 %對高斯躁聲算術均值濾波
1 1 1
1 1 1];
l=l/9;
k=conv2(P1,l)
subplot(3,3,8)
imshow(k,[])
title('arithmeticfilter gaussian')
%對椒鹽躁聲算術均值濾波
d=conv2(P2,l)
subplot(3,3,9)
imshow(d,[])
title('arithmeticfilter salt & pepper noise')
⑨ 高新波的論文成果
Souleymane Balla-Arabé, X.-B. Gao. A Fast and Robust Level Set Method for Image Segmentation Using Fuzzy Clustering and Lattice Boltzmann Method. IEEE Trans. on Systems, Man and Cybernetics Part B: Cybernetics (IEEE TSMC B), 2013. In Press
K.-B. Zhang, X.-B. Gao, et al. Learning Local and Non-Local Priors for Single Image Super-resolution. IEEE Trans. Image Processing (IEEE TIP), Vol.21, No,11, pp.4544-4556, 2012.
L.-L. An, X.-B. Gao, et al. Robust Reversible Watermarking via Clustering and Enhanced Pixel-wise Masking. IEEE Trans. Image Processing (IEEE TIP), Vol.21, No.8, pp.3589-3611, 2012.
Y. Su, X.-B. Gao, et al. Multivariate Multi-linear Regression. IEEE Trans. on Systems, Man and Cybernetics Part B: Cybernetics (IEEE SMC B), Vol.42, No.6, pp.1560-1573, Dec. 2012.
X.-B. Gao, K. Zhang, et al. Image Super-Resolution with Sparse Neighbor em[ant]bedding. IEEE Trans. Image Processing (IEEE TIP), Vol.21, No.7, pp.3149-3205, 2012.
Y. Su, Y. Fu, X.-B Gao, Q. Tian. Discriminant Learning through Multiple Principal Angles for Visual Recognition. IEEE Trans. on Image Processing (IEEE TIP), Vol.21, No.3, pp.1381-1390, 2012.
X.-B Gao, K.-B. Zhang, et al. Joint Learning for Single Image Super-resolution via Coupled Constraint. IEEE Trans. on Image Processing (IEEE TIP), Vol.21, No.2, pp.469-490, 2012.
C.-N. Tian, G. Fan, X.-B. Gao, Q. Tian. Multi-view Face Recognition: From TensorFace to V-TensorFace and K-TensorFace. IEEE Trans. on Systems, Man and Cybernetics Part B: Cybernetics (IEEE TSMC B). Vol.42, No.2, pp.320-333, 2012.
X.-B. Gao, N.-N. Wang, et al. Face Sketch-Photo Synthesis and Retrieval Using Sparse Representation. IEEE Trans. on Circuits Systems for Video technology (IEEE TCSVT), Vol.22, No.8, pp.1213-1226, 2012
X.-B. Gao, X. M. Wang, et al. Supervised Gaussian Process Latent Variable Model for Dimensionality Rection. IEEE Trans. on System, Man, and Cybernetics, Part B: Cybernetics (IEEE TSMC B), Vol.41, No.2, pp.518 525, April 2011.
X.-B. Gao, B. Wang, et al. A Relay Level Set Method for Automatic Image Segmentation. IEEE Trans. on System, Man, and Cybernetics, Part B: Cybernetics (IEEE TSMC B), Vol.41, No.2, pp.42 434, April 2011.
X.-B. Gao, L. L. An, et al. Lossless Data em[ant]bedding Using Generalized Statistical Quantity Histogram. IEEE Trans. on Circuits Systems for Video Technology (IEEE TCSVT), Vol.21, No.8, pp.1061 1070, 2011.
K.-B. Zhang, X.-B. Gao, et al. Partially Supervised Neighbor em[ant]bedding for Example based Image Super resolution. IEEE Journal of Selected Topics in Signal Processing, Vol.5, No.5, pp.230 239, 2011.
X.-B. Gao, J. Chen, et al. Multi sensor Centralized Fusion without Measurement Noise Covariance by Variational Bayesian Approximation. IEEE Trans. on Aerospace and Electronic Systems (IEEE TAES), Vol.47, No.1, pp.718 722, 2011.
X.-B. Gao, Q. Wang, et al. Zernike Moment based Image Super Resolution. IEEE Trans. on Image Processing (IEEE TIP), Vol. 20, No.10, pp.2738 2747, 2011.
X.-B. Gao, C. Deng, et al. Geometric Distortion Insensitive Image Watermarking in Affine Covariant Regions. IEEE Trans. on System, Man and Cybernetics, Part C: Applications and Reviews (IEEE TSMC C), Vol.40, No.3, pp.278 286, 2010.
X.-B. Gao, Y. Su, et al. A Review of Active Appearance Models. IEEE Trans. on System, Man, and Cybernetics, Part C: Applications and Reviews (IEEE TSMC C), Vol.40, No.2, pp.145 158, 2010.
X.-B. Gao, Y. Wang, et al. On Combining Morphological Component Analysis and Concentric Morphology Model for Mammographic Mass Detection. IEEE Trans. on Information Technology in Biomedicine (IEEE TITB), Vol.14, No.2, pp.266 273, 2010.
B. Wang, X.-B. Gao, et al. A Unified Tensor Level Set for Image Segmentation. IEEE Trans. on System, Man, and Cybernetics, Part B: Cybernetics (IEEE TSMC B), Vol. 40, No.3, pp.857 867, 2010.
X.-B. Wang, Z. Li, P. C. Xu, Y. Y. Xu, X.-B. Gao. Spectrum Sharing in Cognitive Radio Networks: An Auction based Approach. IEEE Trans. on Systems, Man and Cybernetics Part B: Cybernetics (IEEE TSMC B), Vol.40, No.3, pp.587 596, June 2010.
C. H. Hu, X. B. Wang, Z. C. Yang, J. F. Zhang, Y. Y. Xu, X.-B. Gao. A Geometry Study on the Capacity of Wireless Networks via Percolation. IEEE Trans. on Communications (IEEE TC), Vol.58, No.10, pp.2916 2925, 2010.
X.-B. Gao, W. Lu, et al. Image Quality Assessment Based on Multiscale Geometric Analysis. IEEE Trans. on Image Processing (IEEE TIP), Vol.18, No.7, pp.1409 1423, 2009.
D. Tao, X. Li, W. Lu, X.-B. Gao. Reced reference IQA in Contourlet Domain. IEEE Trans. on System, Man, and Cybernetics, Part B: Cybernetics (IEEE TSMC B), Vol.39, No.6, pp.1623 1627, 2009.
X.-B. Gao, J. Zhong, J. Li, C. Tian. Face Sketch Synthesis Algorithm Based on E HMM and Selective Ensemble. IEEE Trans. on Circuits and Systems for Video Technology (IEEE TCSVT), Vol.18, No.4, pp.487 496, 2008.
X.-B. Gao and X. Tang. Unsupervised Video Shot Segmentation and Model free Anchorperson Detection for News Video Story Parsing. IEEE Trans. on Circuits Systems for Video Technology (IEEE TCSVT), Vol. 12, no. 9, pp.765 776, 2002.
X. Tang, X.-B. Gao, J. Z. Liu and H. Zhang. A Spatial temporal Approach for Video Caption Detection and Recognition. IEEE Trans. on Neural Networks (IEEE TNN), Vol.13, No. 4, pp. 961 971, 2002.
Z. X. Niu, X.-B. Gao, Q. Tian. Real World Trajectory Extraction for Attack Pattern Analysis in Soccer Video. Pattern Recognition, Vol.45, No.5, pp.1937 1947, 2012.
X.-B. Gao, X. Wang, et al. Transfer Latent Variable Model Learning Based on Divergence Analysis. Pattern Recognition (Elsevier), Vol.44, No.10 11, pp.2358 2366, 2011.
Y. Wang, D. Tao, X.-B. Gao. Feature em[ant]bedded vector valued contour based level set method with relaxed shape constraint for mammographic mass segmentation. Pattern Recognition (Elsevier), Vol.44, No.9, pp.1903 1915, 2011.
X.-B. Gao, B. Xiao, et al. Image categorization: graph edit distance + edge direction histogram. Pattern Recognition (Elsevier). Vol.41, No.10, pp.3179 3191, October, 2008.
X.-B. Gao, et al. Shot based Video Retrieval with Optical Flow Tensor and HMM. Pattern Recognition Letters (Elsevier), Vol.30, No.2, pp.140 147, 2009.
X. Chen, X.-B. Gao*, et al. 3D Reconstruction of Light Flux Distribution on Arbitrary Surfaces from 2D Multi photographic Images. Optics Express, Vol,18, No.19, pp.19876 19893, 2010.
X. Chen, X.-B. Gao, et al. A study of photon propagation in free space based on hybrid radiosity radiance theorem. Optics Express, Vol.17, No.18, pp.16266 16280, 2009
X.-B. Gao, R. Fu, et al. Image Segmentation for Aurora Index Extraction. Computer Vision and Image Understanding, Vol.115, No.3, pp.390 402, 2011.
X.-B. Gao, Y. M. Yang, et al. Discriminative optical flow tensor for video semantic analysis. Computer Vision and Image Understanding, Vol.113, No. 3, pp.372 383, 2009.
K. Zhang, X.-B. Gao, et al. Multi scale Dictionary for Single Image Super resolution. Proceedings of Computer Vision and Pattern Recognition (CVPR2012), Providence, Rhode Island, 16 21 June, 2012, USA.
Z. Niu, G. Hua, X.-B. Gao and Q. Tian. Context Aware Topic Model for Scene Recognition. Proceedings of Computer Vision and Pattern Recognition (CVPR2012), Providence, Rhode Island, 16 21 June, 2012, USA.
L. H. He, D. Tao, X. Li, X.-B. Gao. Sparse Representation for Blind Image Quality Assessment. Proceedings of Computer Vision and Pattern Recognition (CVPR2012), Providence, Rhode Island, 16 21 June, 2012, USA.
Z. X. Niu, G. Hua, X.-B. Gao, Q. Tian. Spatial DiscLDA for Visual Recognition. Proceedings of Computer Vision and Pattern Recognition (CVPR2011), 21 23 June, 2011, Colorado, USA.
Z. X. Niu, Q. Tian, X.-B. Gao. Real World Trajectory Extraction for Attack Pattern Analysis in Soccer Video. Proceedings of the ACM International Conference on Multimedia (ACM MM2010), pp.635 638, 25 29 October 2010, Firenze, Italy.
W. Ning, J. Li, J. Li, X.-B. Gao. 3D Medical Image Processing and Analyzing System. Demo session of Asian Conference on Computer Vision (ACCV2009), Xian, China, 2009.
其它核心期刊及國際會議論文200餘篇,其中SCI檢索100餘篇,EI檢索200餘篇。