指紋演算法朝鮮
『壹』 指紋的識別原理
指紋識別
讀取指紋圖象、提取特徵、保存數據和比對。在一開始,通過指紋讀取設備讀取到人體指紋的圖象,取到指紋圖象之後,要對原始圖象進行初步的處理,使之更清晰。接下來,指紋辨識軟體建立指紋的數字表示——特徵數據,一種單方向的轉換,可以從指紋轉換成特徵數據但不能從特徵數據轉換成為指紋,而兩枚不同的指紋不會產生相同的特徵數據。
有的演算法把節點和方向信息組合產生了更多的數據,這些方向信息表明了各個節點之間的關系,也有的演算法還處理整幅指紋圖像。總之,這些數據,通常稱為模板,保存為1K大小的記錄。無論它們是怎樣組成的,至今仍然沒有一種模板的標准,也沒有一種公布的抽象演算法,而是各個廠商自行其是。最後,通過計算機模糊比較的方法,把兩個指紋的模板進行比較,計算出它們的相似程度,最終得到兩個指紋的匹配結果。指紋其實是比較復雜的。
與人工處理不同,許多生物識別技術公司並不直接存儲指紋的圖象。多年來在各個公司及其研究機構產生了許多數字化的演算法(美國有關法律認為,指紋圖象屬於個人隱私,因此不能直接存儲指紋圖象)。
指紋識別演算法最終都歸結為在指紋圖象上找到並比對指紋的特徵。指紋的特徵我們定義了指紋的兩類特徵來進行指紋的驗證:總體特徵和局部特徵。總體特徵是指那些用人眼直接就可以觀察到的特徵,包括:基本紋路圖案環型(loop),弓型(arch),螺旋型(whorl)。其他的指紋圖案都基於這三種基本圖案。僅僅依靠圖案類型來分辨指紋是遠遠不夠的,這只是一個粗略的分類,但通過分類使得在大資料庫中搜尋指紋更為方便。 (PatternArea)模式區是指指紋上包括了總體特徵的區域,即從模式區就能夠分辨出指紋是屬於那一種類型的。有的指紋識別演算法只使用模式區的數據。Aetex的指紋識別演算法使用了所取得的完整指紋而不僅僅是模式區進行分析和識別。
核心點(CorePoint)核心點位於指紋紋路的漸進中心,它用於讀取指紋和比對指紋時的參考點。
三角點(Delta)三角點位於從核心點開始的第一個分叉點或者斷點、或者兩條紋路會聚處、孤立點、折轉處,或者指向這些奇異點。三角點提供了指紋紋路的計數和跟蹤的開始之處。
式樣線(TypeLines)式樣線是在指包圍模式區的紋路線開始平行的地方所出現的交叉紋路,式樣線通常很短就中斷了,但它的外側線開始連續延伸。 (RidgeCount)指模式區內指紋紋路的數量。在計算指紋的紋數時,一般先在連接核心點和三角點,這條連線與指紋紋路相交的數量即可認為是指紋的紋數。局部特徵局部特徵是指指紋上的節點。兩枚指紋經常會具有相同的總體特徵,但它們的局部特徵--節點,卻不可能完全相同節點(MinutiaPoints)指紋紋路並不是連續的,平滑筆直的,而是經常出現中斷、分叉或打折。這些斷點、分叉點和轉折點就稱為節點。就是這些節點提供了指紋唯一性的確認節點特性
1.分類-節點有以下幾種類型,最典型的是終結點和分叉點
A.終結點(Ending)--一條紋路在此終結。
B.分叉點(Bifurcation)--一條紋路在此分開成為兩條或更多的紋路。
C.分歧點(RidgeDivergence)--兩條平行的紋路在此分開。
D.孤立點(DotorIsland)--一條特別短的紋路,以至於成為一點
E.環點(Enclosure)--一條紋路分開成為兩條之後,立即有合並成為一條,這樣形成的一個小環稱為環點
F.短紋(ShortRidge)--一端較短但不至於成為一點的紋路,
2.方向(Orientation)--節點可以朝著一定的方向。
3.曲率(Curvature)--描述紋路方向改變的速度。
4.位置(Position)--節點的位置通過(x,y)坐標來描述,可以是絕對的,也可以是相對於三角點或特徵點的。 從「指紋」到「指紋術」的研究,經歷了漫長的過程。指紋技術形成之後,又經過了從人工識別技術到自動化識別技術的發展轉變。隨著計算機圖像處理技術和信息技術的發展,指紋識別技術逐漸進入IT技術領域,與眾多計算機信息系統結合在一起,廣泛應用起來。
『貳』 指紋識別演算法
呵呵,不知樓主是真不懂還是假不懂,問別人要指紋演算法,還要詳細點的!!深圳十指科技
『叄』 指紋識別演算法都有哪些,最先進的是什麼演算法
現在國內外大都採用基於細節特徵點的指紋識別技術,即採用基於圖像處理的指紋識別演算法,有兩種比較有代表性的。一種是基於方向濾波增強,並在指紋細化圖上提取特徵點的演算法,另一種是直接從指紋灰度圖上提取特徵點的演算法。難題在於有些演算法會由於指紋圖像的噪音、皮膚彈性引起的非線性形變等多方面因素,導致在識別過程中出現誤差,影響識別率等[1-2]
指紋演算法存在的難題與方向
指紋圖像預處理:預處理的目的是改善輸入指紋圖像的質量,以提高特徵提取的准確性。本文採用灰度分割法對指紋圖像進行分割。利用中值濾波去噪。通過自適應二值化的方法處理指紋圖像,最後再對圖像進行細化處理並去除毛刺,斷裂等干擾。
指紋圖像特徵提取:對指紋圖像的特徵點進行提取。由於經過預處理後的細化圖像上存在大量的偽特徵點,這些偽特徵點的存在,不但使匹配的速度大大降低,還使指紋識別性能急劇下降,造成識別系統的誤拒率和誤識率的上升。因此在進行指紋匹配之前,應盡可能將偽特徵點去除,針對提取出的指紋細節特徵點含有大量的偽特徵點這一問題,提出了一種邊緣信息判別法,有效地去除了邊界偽特徵點,再根據脊線結構特性去除其毛刺和短脊等偽特徵點,明顯的減少了偽特徵點。
指紋匹配:對指紋圖像的匹配演算法進行研究。特徵匹配是識別系統的關鍵環節,匹配演算法的好壞直接影響識別的性能、速度和效率。為了克服指紋圖像非線性形變的影響,採用基於結構特徵的點匹配演算法,對校準後的點集進行匹配,匹配的特徵點個數在兩個點集中所佔比例大約百分之六十五的范圍內就可判為匹配成功。
『肆』 安朗指紋鎖值得購買嗎
安朗A1000指紋鎖
半導體指紋頭,自動開關門,萬能互換,一鍵快鎖,反鎖時間可調 個性化時間設置,雙重開啟模式自由選擇。
指紋演算法:採用朝鮮指紋處理演算法,動態更新用戶指紋庫,帶自學習模式。100枚指紋盡情不斷。
密碼功能:採用防窺密碼輸入。
刷卡功能:採用微波尋卡技術,可識別二代身份證,銀行卡,小區卡等。
LED提示:觸摸面板擁有紅白雙色LED背關燈。
夜晶顯示:人性菜單,智能化人機交互界面。
『伍』 指紋識別演算法或者相關的圖片像素的演算法
您好,目前指紋識別系統大多都採用特徵點匹配,識別系統將指紋圖像經過去噪處理後,把指紋圖像紋理細化,然後根據指紋的特徵,找到指紋的特徵點進行識別,它的識別速度快,能夠滿足一對多個指紋的識別需要。但是對於殘缺、污損指紋,在進行特徵點提取的過程中只能提取到部分特徵點,不能達到指紋識別所需的特徵點數量,不能完成識別。同時研究發現在指紋圖像的某些局部圖像中,變化不明顯或是有規律變化的,所以根據這些局部圖像的不變和有規律變化提出了基於圖像匹配的指紋局部取像輔助識別系統。因此在原有指紋系統的基礎上,增加了基於garbor方向濾波的指紋識別紋理匹配的演算法,作為指紋識別系統的一種有效補充,提高了識別率和降低誤識率。通過對資料庫BVC2004中100張不同的指紋圖像測試後,系統運行性能穩定可靠,該系統既可以用於有關部門對殘缺、污損指紋的識別,同時也可以滿足那些強調安全性的使用者的更高使用要求。
『陸』 指紋識別技術的演算法
於指紋所具有的唯一性和不變性,以及指紋識別技術所具有的可行性和實用性,指紋識別成為目前最流行、最方便、最可靠的身份認證技術之一。指紋圖像數據量大,通過直接比對指紋圖像的方法來識別指紋是不可取的,應該先對指紋圖像進行預處理,然後提取出指紋的特徵數據,通過特徵數據的比對來實現自動指紋識別。指紋圖像預處理作為指紋自動識別過程的第一個環節,它的好壞直接影響著自動識別系統的效果。預處理通常包括濾波、方向圖的求取、二值化、細化等幾個步驟。
本文首先闡述了生物特徵識別技術的基本概念,對自動指紋識別系統的組成也作了簡要的介紹。然後對目前指紋圖像預處理的一些常用演算法進行了介紹,針對指紋圖像的特徵,採用了基於Gabor濾波器的指紋預處理方法,它為特徵提取和比對奠定了良好的基礎。
本文所提到的演算法已在PC機上用Visual C++6.0編程實現,實驗結果表明,這種方法能獲得令人滿意的指紋圖像預處理效果。
『柒』 朝鮮用指紋鎖嗎
可能用指紋鎖的不多,但是朝鮮的指紋識別演算法那是相當牛逼,特別是大容量指紋處理演算法是世界上公認的較好的演算法……
『捌』 TLS/SSL數字證書里的指紋演算法、簽名演算法和簽名哈希演算法各是做什麼用的
您好!
作用與目的相同都是為了進行加密,更好的保護平台,SSL安全哈希演算法,是數字簽名演算法標准,所以無論您在哪裡注冊無論多少價格的證書,其演算法基本上都是相同的!
申請SSL證書為考慮到瀏覽器兼容性,保持更多的瀏覽器可以訪問,通常採取加密演算法:RSA 2048 bits,簽名演算法:SHA256WithRSA,該演算法被公認使用,就是網路也使用該演算法!
RSA加密演算法:公鑰用於對數據進行加密,私鑰用於對數據進行解密。
RSA簽名演算法:在簽名演算法中,私鑰用於對數據進行簽名,公鑰用於對簽名進行驗證。
加密演算法分為兩大類:1、對稱加密演算法 2、非對稱加密演算法。
由於計算能力的飛速發展,從安全性角度考慮,很多加密原來SHA1WithRSA簽名演算法的基礎上,新增了支持SHA256WithRSA的簽名演算法。該演算法在摘要演算法上比SHA1WithRSA有更強的安全能力。目前SHA1WithRSA的簽名演算法會繼續提供支持,但為了您的應用安全,強烈建議使用SHA256WithRSA的簽名演算法。
『玖』 指紋識別的原理是什麼
原理:指紋紋路經常出現中斷、分叉或轉折,這些斷點、分叉點和轉折點被稱為"特徵點"。特徵點提供了指紋唯一性的確認信息,正因為這些不同,才可以進行識別。