當前位置:首頁 » 操作系統 » 回溯法演算法

回溯法演算法

發布時間: 2022-06-01 22:58:58

⑴ 求C語言中的回溯法,舉一個簡單的小例子,說明回溯法的運行過程!

比如八皇後問題,要在8×8的棋盤上放置8個皇後,使8個皇後不相互攻擊,即使所有皇後不能位於同一橫行、同一豎行或同一斜行。我們在程序中,首先考慮在第一列放置第一個皇後的情況,有8種放法。接下來考慮在第二行放第二個皇後,也是有8種放法,但是有一些放法是不合法,因為這些方法使第一個皇後和第二個皇後相互攻擊了。對於這樣一些產生了矛盾的演算法,我們必須馬上把它和它的解空間子樹剪掉,這就是「剪枝」。如果發現在第j列放置第j個皇後的所有情況都會與前面出現矛盾時,那這時候我們要回到第j-1列,考慮換一個位置放第j-1個皇後,這就是回溯。
以上答案,純粹逐字打出來的。有不懂可以追問。

⑵ 回溯演算法的基本思想

回溯演算法的基本思想是:從一條路往前走,能進則進,不能進則退回來,換一條路再試。八皇後問題就是回溯演算法的典型,第一步按照順序放一個皇後,然後第二步符合要求放第2個皇後,如果沒有位置符合要求,那麼就要改變第一個皇後的位置,重新放第2個皇後的位置,直到找到符合條件的位置就可以了。回溯在迷宮搜索中使用很常見,就是這條路走不通,然後返回前一個路口,繼續下一條路。回溯演算法說白了就是窮舉法。不過回溯演算法使用剪枝函數,剪去一些不可能到達 最終狀態(即答案狀態)的節點,從而減少狀態空間樹節點的生成。回溯法是一個既帶有系統性又帶有跳躍性的的搜索演算法。它在包含問題的所有解的解空間樹中,按照深度優先的策略,從根結點出發搜索解空間樹。演算法搜索至解空間樹的任一結點時,總是先判斷該結點是否肯定不包含問題的解。如果肯定不包含,則跳過對以該結點為根的子樹的系統搜索,逐層向其祖先結點回溯。否則,進入該子樹,繼續按深度優先的策略進行搜索。回溯法在用來求問題的所有解時,要回溯到根,且根結點的所有子樹都已被搜索遍才結束。而回溯法在用來求問題的任一解時,只要搜索到問題的一個解就可以結束。這種以深度優先的方式系統地搜索問題的解的演算法稱為回溯法,它適用於解一些組合數較大的問題。

java回溯法如何執行

回溯法也稱為試探法,該方法首先暫時放棄關於問題規模大小的限制,並將問題的候選解按某種順序逐一枚舉和檢驗。當發現當前候選解不可能是解時,就選擇下一個候選解;倘若當前候選解除了還不滿足問題規模要求外,滿足所有其他要求時,繼續擴大當前候選解的規模,並繼續試探。如果當前候選解滿足包括問題規模在內的所有要求時,該候選解就是問題的一個解。在回溯法中,放棄當前候選解,尋找下一個候選解的過程稱為回溯。擴大當前候選解的規模,以繼續試探的過程稱為向前試探。 1、回溯法的一般描述 可用回溯法求解的問題P,通常要能表達為:對於已知的由n元組(x1,x2,…,xn)組成的一個狀態空間E={(x1,x2,…,xn)∣xi∈Si ,i=1,2,…,n},給定關於n元組中的一個分量的一個約束集D,要求E中滿足D的全部約束條件的所有n元組。其中Si是分量xi的定義域,且 |Si| 有限,i=1,2,…,n。我們稱E中滿足D的全部約束條件的任一n元組為問題P的一個解。 解問題P的最樸素的方法就是枚舉法,即對E中的所有n元組逐一地檢測其是否滿足D的全部約束,若滿足,則為問題P的一個解。但顯然,其計算量是相當大的。 我們發現,對於許多問題,所給定的約束集D具有完備性,即i元組(x1,x2,…,xi)滿足D中僅涉及到x1,x2,…,xi的所有約束意味著j(j<i)元組(x1,x2,…,xj)一定也滿足D中僅涉及到x1,x2,…,xj的所有約束,i=1,2,…,n。換句話說,只要存在0≤j≤n-1,使得(x1,x2,…,xj)違反D中僅涉及到x1,x2,…,xj的約束之一,則以(x1,x2,…,xj)為前綴的任何n元組(x1,x2,…,xj,xj+1,…,xn)一定也違反D中僅涉及到x1,x2,…,xi的一個約束,n≥i>j。因此,對於約束集D具有完備性的問題P,一旦檢測斷定某個j元組(x1,x2,…,xj)違反D中僅涉及x1,x2,…,xj的一個約束,就可以肯定,以(x1,x2,…,xj)為前綴的任何n元組(x1,x2,…,xj,xj+1,…,xn)都不會是問題P的解,因而就不必去搜索它們、檢測它們。回溯法正是針對這類問題,利用這類問題的上述性質而提出來的比枚舉法效率更高的演算法。 回溯法首先將問題P的n元組的狀態空間E表示成一棵高為n的帶權有序樹T,把在E中求問題P的所有解轉化為在T中搜索問題P的所有解。樹T類似於檢索樹,它可以這樣構造: 設Si中的元素可排成xi(1) ,xi(2) ,…,xi(mi-1) ,|Si| =mi,i=1,2,…,n。從根開始,讓T的第I層的每一個結點都有mi個兒子。這mi個兒子到它們的雙親的邊,按從左到右的次序,分別帶權xi+1(1) ,xi+1(2) ,…,xi+1(mi) ,i=0,1,2,…,n-1。照這種構造方式,E中的一個n元組(x1,x2,…,xn)對應於T中的一個葉子結點,T的根到這個葉子結點的路徑上依次的n條邊的權分別為x1,x2,…,xn,反之亦然。另外,對於任意的0≤i≤n-1,E中n元組(x1,x2,…,xn)的一個前綴I元組(x1,x2,…,xi)對應於T中的一個非葉子結點,T的根到這個非葉子結點的路徑上依次的I條邊的權分別為x1,x2,…,xi,反之亦然。特別,E中的任意一個n元組的空前綴(),對應於T的根。 因而,在E中尋找問題P的一個解等價於在T中搜索一個葉子結點,要求從T的根到該葉子結點的路徑上依次的n條邊相應帶的n個權x1,x2,…,xn滿足約束集D的全部約束。在T中搜索所要求的葉子結點,很自然的一種方式是從根出發,按深度優先的策略逐步深入,即依次搜索滿足約束條件的前綴1元組(x1i)、前綴2元組(x1,x2)、…,前綴I元組(x1,x2,…,xi),…,直到i=n為止。 在回溯法中,上述引入的樹被稱為問題P的狀態空間樹;樹T上任意一個結點被稱為問題P的狀態結點;樹T上的任意一個葉子結點被稱為問題P的一個解狀態結點;樹T上滿足約束集D的全部約束的任意一個葉子結點被稱為問題P的一個回答狀態結點,它對應於問題P的一個解。 【問題】 組合問題 問題描述:找出從自然數1、2、……、n中任取r個數的所有組合。 例如n=5,r=3的所有組合為: (1)1、2、3 (2)1、2、4 (3)1、2、5 (4)1、3、4 (5)1、3、5 (6)1、4、5 (7)2、3、4 (8)2、3、5 (9)2、4、5 (10)3、4、5 則該問題的狀態空間為: E={(x1,x2,x3)∣xi∈S ,i=1,2,3 } 其中:S={1,2,3,4,5} 約束集為: x1<x2<x3 顯然該約束集具有完備性。 問題的狀態空間樹T: 2、回溯法的方法 對於具有完備約束集D的一般問題P及其相應的狀態空間樹T,利用T的層次結構和D的完備性,在T中搜索問題P的所有解的回溯法可以形象地描述為: 從T的根出發,按深度優先的策略,系統地搜索以其為根的子樹中可能包含著回答結點的所有狀態結點,而跳過對肯定不含回答結點的所有子樹的搜索,以提高搜索效率。具體地說,當搜索按深度優先策略到達一個滿足D中所有有關約束的狀態結點時,即「激活」該狀態結點,以便繼續往深層搜索;否則跳過對以該狀態結點為根的子樹的搜索,而一邊逐層地向該狀態結點的祖先結點回溯,一邊「殺死」其兒子結點已被搜索遍的祖先結點,直到遇到其兒子結點未被搜索遍的祖先結點,即轉向其未被搜索的一個兒子結點繼續搜索。 在搜索過程中,只要所激活的狀態結點又滿足終結條件,那麼它就是回答結點,應該把它輸出或保存。由於在回溯法求解問題時,一般要求出問題的所有解,因此在得到回答結點後,同時也要進行回溯,以便得到問題的其他解,直至回溯到T的根且根的所有兒子結點均已被搜索過為止。 例如在組合問題中,從T的根出發深度優先遍歷該樹。當遍歷到結點(1,2)時,雖然它滿足約束條件,但還不是回答結點,則應繼續深度遍歷;當遍歷到葉子結點(1,2,5)時,由於它已是一個回答結點,則保存(或輸出)該結點,並回溯到其雙親結點,繼續深度遍歷;當遍歷到結點(1,5)時,由於它已是葉子結點,但不滿足約束條件,故也需回溯。 3、回溯法的一般流程和技術 在用回溯法求解有關問題的過程中,一般是一邊建樹,一邊遍歷該樹。在回溯法中我們一般採用非遞歸方法。下面,我們給出回溯法的非遞歸演算法的一般流程: 在用回溯法求解問題,也即在遍歷狀態空間樹的過程中,如果採用非遞歸方法,則我們一般要用到棧的數據結構。這時,不僅可以用棧來表示正在遍歷的樹的結點,而且可以很方便地表示建立孩子結點和回溯過程。 例如在組合問題中,我們用一個一維數組Stack[ ]表示棧。開始棧空,則表示了樹的根結點。如果元素1進棧,則表示建立並遍歷(1)結點;這時如果元素2進棧,則表示建立並遍歷(1,2)結點;元素3再進棧,則表示建立並遍歷(1,2,3)結點。這時可以判斷它滿足所有約束條件,是問題的一個解,輸出(或保存)。這時只要棧頂元素(3)出棧,即表示從結點(1,2,3)回溯到結點(1,2)。

⑷ 什麼是回溯演算法

回溯演算法也叫試探法,它是一種系統地搜索問題的解的方法。回溯演算法的基本思想是:從一條路往前走,能進則進,不能進則退回來,換一條路再試。用回溯演算法解決問題的一般步驟為: 1、定義一個解空間,它包含問題的解。 2、利用適於搜索的方法組織解空間。 3、利用深度優先法搜索解空間。 4、利用限界函數避免移動到不可能產生解的子空間。 問題的解空間通常是在搜索問題的解的過程中動態產生的,這是回溯演算法的一個重要特性。 1.跳棋問題: 33個方格頂點擺放著32枚棋子,僅中央的頂點空著未擺放棋子。下棋的規則是任一棋子可以沿水平或成垂直方向跳過與其相鄰的棋子,進入空著的頂點並吃掉被跳過的棋子。試設計一個演算法找出一種下棋方法,使得最終棋盤上只剩下一個棋子在棋盤中央。 演算法實現提示 利用回溯演算法,每次找到一個可以走的棋子走動,並吃掉。若走到無子可走還是剩餘多顆,則回溯,走下一顆可以走動的棋子。當吃掉31顆時說明只剩一顆,程序結束。 2.中國象棋馬行線問題: 中國象棋半張棋盤如圖1(a)所示。馬自左下角往右上角跳。今規定只許往右跳,不許往左跳。比如 圖4(a)中所示為一種跳行路線,並將所經路線列印出來。列印格式為: 0,0->2,1->3,3->1,4->3,5->2,7->4,8… 演算法分析: 如圖1(b),馬最多有四個方向,若原來的橫坐標為j、縱坐標為i,則四個方向的移動可表示為: 1: (i,j)→(i+2,j+1); (i<3,j<8) 2: (i,j)→(i+1,j+2); (i<4,j<7) 3: (i,j)→(i-1,j+2); (i>0,j<7) 4: (i,j)→(i-2,j+1); (i>1,j<8) 搜索策略: S1:A[1]:=(0,0); S2:從A[1]出發,按移動規則依次選定某個方向,如果達到的是(4,8)則轉向S3,否則繼續搜索下 一個到達的頂點; S3:列印路徑。 演算法設計: procere try(i:integer); {搜索} var j:integer; begin for j:=1 to 4 do {試遍4個方向} if 新坐標滿足條件 then begin 記錄新坐標; if 到達目的地 then print {統計方案,輸出結果} else try(i+1); {試探下一步} 退回到上一個坐標,即回溯; end; end;

⑸ 計算機十大經典演算法有哪些

再把子問題分成更小的子問題……直到最後子問題可以簡單的直接求解,逆著這個行進方向,從終點向始點計算,在選定系統行進方向之後,常比線性規劃法更為有效,由每個階段都作出決策,從而使整個過程達到最優化。所謂多階段決策過程,特別是對於那些離散型問題。實際上,動態規劃法就是分多階段進行決策,其基本思路是,原問題的解即子問題的解的合並
不好意思啊,就是把研究問題分成若干個相互聯系的階段,逐次對每個階段尋找某種決策,用來解決多階段決策過程問題的一種最優化方法,就是把一個復雜的問題分成兩個或更多的相同或相似的子問題:按時空特點將復雜問題劃分為相互聯系的若干個階段。字面上的解釋是「分而治之」動態規劃法[dynamic
programming
method
(dp)]是系統分析中一種常用的方法。在水資源規劃中,往往涉及到地表水庫調度、水資源量的合理分配、優化調度等問題,而這些問題又可概化為多階段決策過程問題。動態規劃法是解決此類問題的有效方法。動態規劃法是20世紀50年代由貝爾曼(r,使整個過程達到最優.
bellman)等人提出。許多實際問題利用動態規劃法處理,故又稱為逆序決策過程。
回溯法是一種選優搜索法,按選優條件向前搜索,以達到目標。但當探索到某一步時,發現原先選擇並不優或達不到目標,就退回一步重新選擇,這種走不通就退回再走的技術為回溯法,而滿足回溯條件的某個狀態的點稱為「回溯點」。
在計算機科學中,分治法是一種很重要的演算法

⑹ 簡述回溯法的2種演算法框架,並分別舉出適合用這兩種框架解決的一個問題實例

回溯法(探索與回溯法)是一種選優搜索法,又稱為試探法,按選優條件向前搜索,以達到目標。但當探索到某一步時,發現原先選擇並不優或達不到目標,就退回一步重新選擇,這種走不通就退回再走的技術為回溯法,而滿足回溯條件的某個狀態的點稱為「回溯點」。
基本思想
在包含問題的所有解的解空間樹中,按照深度優先搜索的策略,從根結點出發深度探索解空間樹。當探索到某一結點時,要先判斷該結點是否包含問題的解,如果包含,就從該結點出發繼續探索下去,如果該結點不包含問題的解,則逐層向其祖先結點回溯。(其實回溯法就是對隱式圖的深度優先搜索演算法)。 若用回溯法求問題的所有解時,要回溯到根,且根結點的所有可行的子樹都要已被搜索遍才結束。 而若使用回溯法求任一個解時,只要搜索到問題的一個解就可以結束

一般表達
可用回溯法求解的問題P,通常要能表達為:對於已知的由n元組(x1,x2,…,xn)組成的一個狀態空間E={(x1,x2,…,xn)∣xi∈Si ,i=1,2,…,n},給定關於n元組中的一個分量的一個約束集D,要求E中滿足D的全部約束條件的所有n元組。其中Si是分量xi的定義域,且 |Si| 有限,i=1,2,…,n。我們稱E中滿足D的全部約束條件的任一n元組為問題P的一個解。
解問題P的最樸素的方法就是枚舉法,即對E中的所有n元組逐一地檢測其是否滿足D的全部約束,若滿足,則為問題P的一個解。但顯然,其計算量是相當大的。

規律
我們發現,對於許多問題,所給定的約束集D具有完備性,即i元組(x1,x2,…,xi)滿足D中僅涉及到x1,x2,…,xi的所有約束意味著j(j<=i)元組(x1,x2,…,xj)一定也滿足d中僅涉及到x1,x2,…,xj的所有約束,i=1,2,…,n。換句話說,只要存在0≤j≤n-1,使得(x1,x2,…,xj)違反d中僅涉及到x1,x2,…,xj的約束之一,則以(x1,x2,…,xj)為前綴的任何n元組(x1,x2,…,xj,xj+1,…,xn)一定也違反d中僅涉及到x1,x2,…,xi的一個約束,n≥i≥j。因此,對於約束集d具有完備性的問題p,一旦檢測斷定某個j元組(x1,x2,…,xj)違反d中僅涉及x1,x2,…,xj的一個約束,就可以肯定,以(x1,x2,…,xj)為前綴的任何n元組(x1,x2,…,xj,xj+1,…,xn)都不會是問題p的解,因而就不必去搜索它們、檢測它們。回溯法正是針對這類問題,利用這類問題的上述性質而提出來的比枚舉法效率更高的演算法。

熱點內容
java記事本程序 發布:2025-01-10 22:38:27 瀏覽:665
如何通過網吧電腦進入網吧伺服器 發布:2025-01-10 22:22:30 瀏覽:706
資料庫緩存是什麼 發布:2025-01-10 22:21:05 瀏覽:386
dns配置出現錯誤該怎麼辦 發布:2025-01-10 22:13:00 瀏覽:439
雲頂演算法 發布:2025-01-10 22:10:07 瀏覽:991
收件伺服器有什麼作用 發布:2025-01-10 21:50:01 瀏覽:391
安卓70緩存 發布:2025-01-10 21:49:03 瀏覽:684
圖像檢索演算法 發布:2025-01-10 21:43:58 瀏覽:559
plsqlforupdate 發布:2025-01-10 21:43:50 瀏覽:917
如何設置健康碼快捷方式vivo安卓 發布:2025-01-10 21:39:52 瀏覽:504