當前位置:首頁 » 操作系統 » matlab遺傳演算法pdf

matlab遺傳演算法pdf

發布時間: 2022-05-31 23:49:29

1. 如何用matlab做遺傳演算法

遺傳演算法在matlab里有兩個函數,分別是ga和gaoptimset,前者用來調用遺傳演算法,後者用來設定遺傳演算法的參數,具體內容可以doc ga查看,遺傳演算法有哪些參數可以直接在命令窗口輸入gaoptimset查看,祝好。

2. matlab遺傳演算法

首先,建立自定義函數,ga1_fun。m

function f = ga1_fun(x)

%題目是min f(x)=e^x1(4x1^2+2x2^2+4x1x2+2x2+1)

%s.t. 1.5+x1x2-x1-x2≤0,-x1x2≤10

if (1.5+x(1)*x(2)-x(1)-x(2)>0|-x(1)*x(2)>10)

f=100;

else

f=exp(x(1))*(4*x(1)^2+2*x(2)^2+4*x(1)*x(2)+2*x(2)+1);

end

然後,執行下列命令

[x,f]=ga(@ga1_fun,2)

運行結果:

3. MATLAB遺傳演算法

function ret=Code(lenchrom,bound)
%本函數將變數編碼成染色體,用於隨機初始化一個種群
% lenchrom input : 染色體長度
% bound input : 變數的取值范圍
% ret output: 染色體的編碼值

flag=0;
while flag==0
pick=rand(1,length(lenchrom));
ret=bound(:,1)'+(bound(:,2)-bound(:,1))'.*pick; %線性插值
flag=test(lenchrom,bound,ret); %檢驗染色體的可行性
end
function ret=Cross(pcross,lenchrom,chrom,sizepop,bound)
%本函數完成交叉操作
% pcorss input : 交叉概率
% lenchrom input : 染色體的長度
% chrom input : 染色體群
% sizepop input : 種群規模
% ret output : 交叉後的染色體

for i=1:sizepop

% 隨機選擇兩個染色體進行交叉
pick=rand(1,2);
while prod(pick)==0
pick=rand(1,2);
end
index=ceil(pick.*sizepop);
% 交叉概率決定是否進行交叉
pick=rand;
while pick==0
pick=rand;
end
if pick>pcross
continue;
end
flag=0;
while flag==0
% 隨機選擇交叉位置
pick=rand;
while pick==0
pick=rand;
end
pos=ceil(pick.*sum(lenchrom)); %隨機選擇進行交叉的位置,即選擇第幾個變數進行交叉,注意:兩個染色體交叉的位置相同
pick=rand; %交叉開始
v1=chrom(index(1),pos);
v2=chrom(index(2),pos);
chrom(index(1),pos)=pick*v2+(1-pick)*v1;
chrom(index(2),pos)=pick*v1+(1-pick)*v2; %交叉結束
flag1=test(lenchrom,bound,chrom(index(1),:)); %檢驗染色體1的可行性
flag2=test(lenchrom,bound,chrom(index(2),:)); %檢驗染色體2的可行性
if flag1*flag2==0
flag=0;
else flag=1;
end %如果兩個染色體不是都可行,則重新交叉
end
end
ret=chrom;

clc
clear all
% warning off

%% 遺傳演算法參數
maxgen=50; %進化代數
sizepop=100; %種群規模
pcross=[0.6]; %交叉概率
pmutation=[0.1]; %變異概率
lenchrom=[1 1]; %變數字串長度
bound=[-5 5;-5 5]; %變數范圍

%% 個體初始化
indivials=struct('fitness',zeros(1,sizepop), 'chrom',[]); %種群結構體
avgfitness=[]; %種群平均適應度
bestfitness=[]; %種群最佳適應度
bestchrom=[]; %適應度最好染色體
% 初始化種群
for i=1:sizepop
indivials.chrom(i,:)=Code(lenchrom,bound); %隨機產生個體
x=indivials.chrom(i,:);
indivials.fitness(i)= (x(1)*exp(-(x(1)^2 + x(2)^2)));
%-20*exp(-0.2*sqrt((x(1)^2+x(2)^2)/2))-exp((cos(2*pi*x(1))+cos(2*pi*x(2)))/2)+20+2.71289
% 這個是我的測試函數
% 如果有這個函數的話,可以得到最優值

end
%找最好的染色體
[bestfitness bestindex]=min(indivials.fitness);
bestchrom=indivials.chrom(bestindex,:); %最好的染色體
avgfitness=sum(indivials.fitness)/sizepop; %染色體的平均適應度
% 記錄每一代進化中最好的適應度和平均適應度
trace=[];

%% 進化開始
for i=1:maxgen

% 選擇操作
indivials=Select(indivials,sizepop);
avgfitness=sum(indivials.fitness)/sizepop;
% 交叉操作
indivials.chrom=Cross(pcross,lenchrom,indivials.chrom,sizepop,bound);
% 變異操作
indivials.chrom=Mutation(pmutation,lenchrom,indivials.chrom,sizepop,[i maxgen],bound);

% 計算適應度
for j=1:sizepop
x=indivials.chrom(j,:);
indivials.fitness(j)=(x(1)*exp(-(x(1)^2 + x(2)^2)));
%-20*exp(-0.2*sqrt((x(1)^2+x(2)^2)/2))-exp((cos(2*pi*x(1))+cos(2*pi*x(2)))/2)+20+2.71289
% -20*exp(-0.2*sqrt((x(1)^2+x(2)^2)/2))-exp((cos(2*pi*x(1))+cos(2*pi*x(2)))/2)+20+2.71289;

end

%找到最小和最大適應度的染色體及它們在種群中的位置
[newbestfitness,newbestindex]=min(indivials.fitness);
[worestfitness,worestindex]=max(indivials.fitness);
% 代替上一次進化中最好的染色體
if bestfitness>newbestfitness
bestfitness=newbestfitness;
bestchrom=indivials.chrom(newbestindex,:);
end
indivials.chrom(worestindex,:)=bestchrom;
indivials.fitness(worestindex)=bestfitness;

avgfitness=sum(indivials.fitness)/sizepop;

trace=[trace;avgfitness bestfitness]; %記錄每一代進化中最好的適應度和平均適應度
end
%進化結束

%% 結果顯示
[r c]=size(trace);
figure
plot([1:r]',trace(:,1),'r-',[1:r]',trace(:,2),'b--');
title(['函數值曲線 ' '終止代數=' num2str(maxgen)],'fontsize',12);
xlabel('進化代數','fontsize',12);ylabel('函數值','fontsize',12);
legend('各代平均值','各代最佳值','fontsize',12);
ylim([-0.5 5])
disp('函數值 變數');
% 窗口顯示
disp([bestfitness x]);

4. 用matlab遺傳演算法分析運動方式

(1)首先計算出所有個體的適應度總和Σfi。
(2)其次計算出每個個體的相對適應度大小fi/Σfi,類似於softmax。
(3)再產生一個0到1之間的隨機數,依據隨機數出現在上述哪個概率區域內來確定各個個體被選中的次數。
(4)交叉(交配)運算。該步驟是遺傳演算法中產生新的個體的主要操作過程,它用一定的交配概率閾值(pc,一般是0.4到0.99)來控制是否採取單點交叉,多點交叉等方式生成新的交叉個體。
具體步驟如下: (1)先對群體隨機配對。(2)再隨機設定交叉點的位置。 (3)再互換配對染色體間的部分基因。
(5)變異運算。該步驟是產生新的個體的另一種操作。一般先隨機產生變異點,再根據變異概率閾值(pm,一般是0.0001到0.1)將變異點的原有基因取反。

5. 求雷英傑《Matlab遺傳演算法工具箱及應用》電子書,清晰版的,不甚感激。。。。要清晰版的

6. 求雷英傑《Matlab遺傳演算法工具箱及應用》高清版.pdf

MATLAB遺傳演算法工具箱及應用.pdf 文件大小:9.58 M
http://vdisk.weibo.com/s/v5Um8CGqbhhd
MATLAB遺傳演算法工具箱及應用.pdf 文件大小:9.57 M
http://vdisk.weibo.com/s/uaKaXz7OfNCIm

資源已上傳網路雲盤或微盤 提問者下載無需財富值
請及時採納,謝謝

7. matlab 遺傳演算法

function m_main()
clear
clc
Max_gen=100;% 運行代數
pop_size=100;%種群大小
chromsome=10;%染色體的長度
pc=0.9;%交叉概率
pm=0.25;%變異概率
gen=0;%統計代數
%初始化
init=40*rand(pop_size,chromsome)-20;
pop=init;
fit=obj_fitness(pop);
[max_fit,index_max]=max(fit);maxfit=max_fit;
[min_fit,index_min]=min(fit);best_indiv=pop(index_max,:);
%迭代操作
while gen<Max_gen
gen=gen+1; bt(gen)=max_fit;
if maxfit<max_fit;maxfit=max_fit;pop(index_min,:)=pop(index_max,:);best_indiv=pop(index_max,:);end
best_indiv_tmp(gen)=pop(index_max);
newpop=ga(pop,pc,pm,chromsome,fit);
fit=obj_fitness(newpop);
[max_fit,index_max]=max(fit);
[min_fit,index_min]=min(fit);
pop=newpop;
trace(1,gen)=max_fit;
trace(2,gen)=sum(fit)./length(fit);
end
%運行結果
[f_max gen_ct]=max(bt)%求的最大值以及代數
maxfit
best_indiv
%畫圖
% bt
hold on
plot(trace(1,:),'.g:');
plot( trace(2,:),'.r-');
title('實驗結果圖')
xlabel('迭代次數/代'),ylabel('最佳適應度(最大值)');%坐標標注
plot(gen_ct-1,0:0.1:f_max+1,'c-');%畫出最大值
text(gen_ct,f_max+1, '最大值')
hold off

function [fitness]=obj_fitness(pop)
%適應度計算函數
[r c]=size(pop);
x=pop;
fitness=zeros(r,1);
for i=1:r
for j=1:c
fitness(i,1)=fitness(i,1)+sin(sqrt(abs(40*x(i))))+1-abs(x(i))/20.0;
end
end

function newpop=ga(pop,pc,pm,chromsome,fit);
pop_size=size(pop,1);
%輪盤賭選擇
ps=fit/sum(fit);
pscum=cumsum(ps);%size(pscum)
r=rand(1,pop_size);qw=pscum*ones(1,pop_size);
selected=sum(pscum*ones(1,pop_size)<ones(pop_size,1)*r)+1;
newpop=pop(selected,:);
%交叉
if pop_size/2~=0
pop_size=pop_size-1;
end

for i=1:2:pop_size-1
while pc>rand
c_pt=round(8*rand+1);
pop_tp1=newpop(i,:);pop_tp2=newpop(i+1,:);
newpop(i+1,1:c_pt)=pop_tp1(1,1:c_pt);
newpop(i,c_pt+1:chromsome)=pop_tp2(1,c_pt+1:chromsome);
end

end
% 變異
for i=1:pop_size
if pm>rand
m_pt=1+round(9*rand);
newpop(i,m_pt)=40*rand-20;
end
end

8. Matlab遺傳演算法問題

function ret=Code(lenchrom,bound)
%本函數將變數編碼成染色體,用於隨機初始化一個種群
% lenchrom input : 染色體長度
% bound input : 變數的取值范圍
% ret output: 染色體的編碼值

flag=0;
while flag==0
pick=rand(1,length(lenchrom));
ret=bound(:,1)'+(bound(:,2)-bound(:,1))'.*pick; %線性插值
flag=test(lenchrom,bound,ret); %檢驗染色體的可行性
end
function ret=Cross(pcross,lenchrom,chrom,sizepop,bound)
%本函數完成交叉操作
% pcorss input : 交叉概率
% lenchrom input : 染色體的長度
% chrom input : 染色體群
% sizepop input : 種群規模
% ret output : 交叉後的染色體

for i=1:sizepop

% 隨機選擇兩個染色體進行交叉
pick=rand(1,2);
while prod(pick)==0
pick=rand(1,2);
end
index=ceil(pick.*sizepop);
% 交叉概率決定是否進行交叉
pick=rand;
while pick==0
pick=rand;
end
if pick>pcross
continue;
end
flag=0;
while flag==0
% 隨機選擇交叉位置
pick=rand;
while pick==0
pick=rand;
end
pos=ceil(pick.*sum(lenchrom)); %隨機選擇進行交叉的位置,即選擇第幾個變數進行交叉,注意:兩個染色體交叉的位置相同
pick=rand; %交叉開始
v1=chrom(index(1),pos);
v2=chrom(index(2),pos);
chrom(index(1),pos)=pick*v2+(1-pick)*v1;
chrom(index(2),pos)=pick*v1+(1-pick)*v2; %交叉結束
flag1=test(lenchrom,bound,chrom(index(1),:)); %檢驗染色體1的可行性
flag2=test(lenchrom,bound,chrom(index(2),:)); %檢驗染色體2的可行性
if flag1*flag2==0
flag=0;
else flag=1;
end %如果兩個染色體不是都可行,則重新交叉
end
end
ret=chrom;

clc
clear all
% warning off

%% 遺傳演算法參數
maxgen=50; %進化代數
sizepop=100; %種群規模
pcross=[0.6]; %交叉概率
pmutation=[0.1]; %變異概率
lenchrom=[1 1]; %變數字串長度
bound=[-5 5;-5 5]; %變數范圍

%% 個體初始化
indivials=struct('fitness',zeros(1,sizepop), 'chrom',[]); %種群結構體
avgfitness=[]; %種群平均適應度
bestfitness=[]; %種群最佳適應度
bestchrom=[]; %適應度最好染色體
% 初始化種群
for i=1:sizepop
indivials.chrom(i,:)=Code(lenchrom,bound); %隨機產生個體
x=indivials.chrom(i,:);
indivials.fitness(i)= (x(1)*exp(-(x(1)^2 + x(2)^2)));
%-20*exp(-0.2*sqrt((x(1)^2+x(2)^2)/2))-exp((cos(2*pi*x(1))+cos(2*pi*x(2)))/2)+20+2.71289
% 這個是我的測試函數
% 如果有這個函數的話,可以得到最優值

end
%找最好的染色體
[bestfitness bestindex]=min(indivials.fitness);
bestchrom=indivials.chrom(bestindex,:); %最好的染色體
avgfitness=sum(indivials.fitness)/sizepop; %染色體的平均適應度
% 記錄每一代進化中最好的適應度和平均適應度
trace=[];

%% 進化開始
for i=1:maxgen

% 選擇操作
indivials=Select(indivials,sizepop);
avgfitness=sum(indivials.fitness)/sizepop;
% 交叉操作
indivials.chrom=Cross(pcross,lenchrom,indivials.chrom,sizepop,bound);
% 變異操作
indivials.chrom=Mutation(pmutation,lenchrom,indivials.chrom,sizepop,[i maxgen],bound);

% 計算適應度
for j=1:sizepop
x=indivials.chrom(j,:);
indivials.fitness(j)=(x(1)*exp(-(x(1)^2 + x(2)^2)));
%-20*exp(-0.2*sqrt((x(1)^2+x(2)^2)/2))-exp((cos(2*pi*x(1))+cos(2*pi*x(2)))/2)+20+2.71289
% -20*exp(-0.2*sqrt((x(1)^2+x(2)^2)/2))-exp((cos(2*pi*x(1))+cos(2*pi*x(2)))/2)+20+2.71289;

end

%找到最小和最大適應度的染色體及它們在種群中的位置
[newbestfitness,newbestindex]=min(indivials.fitness);
[worestfitness,worestindex]=max(indivials.fitness);
% 代替上一次進化中最好的染色體
if bestfitness>newbestfitness
bestfitness=newbestfitness;
bestchrom=indivials.chrom(newbestindex,:);
end
indivials.chrom(worestindex,:)=bestchrom;
indivials.fitness(worestindex)=bestfitness;

avgfitness=sum(indivials.fitness)/sizepop;

trace=[trace;avgfitness bestfitness]; %記錄每一代進化中最好的適應度和平均適應度
end
%進化結束

%% 結果顯示
[r c]=size(trace);
figure
plot([1:r]',trace(:,1),'r-',[1:r]',trace(:,2),'b--');
title(['函數值曲線 ' '終止代數=' num2str(maxgen)],'fontsize',12);
xlabel('進化代數','fontsize',12);ylabel('函數值','fontsize',12);
legend('各代平均值','各代最佳值','fontsize',12);
ylim([-0.5 5])
disp('函數值 變數');
% 窗口顯示
disp([bestfitness x]);

9. 在matlab中如何用遺傳演算法求解函數和的最小值

該程序採用實數編碼的遺傳演算法編寫,附件1(real code ga.m)為matlab代碼。

附件2(實數編碼遺傳演算法參考資料):

http://www.math.zju.e.cn/cagd/resources/thesis/PhDthesis_ZhouMingHUa.pdf

優化結果需要修改mutate_P以及變異量的大小。因為只有一個優化變數因此編程較為簡單。

提供一個參考鏈接:http://..com/question/583959020.html?oldq=1

10. matlab上的遺傳演算法函數優化

用ga函數,ga函數就是遺傳演算法的函數,它的調用格式為:
x
=
ga(fitnessfcn,nvars,a,b,aeq,beq,lb,ub,nonlcon,options)
fitnessfcn就是待優化函數,nvars為變數個數,然後後面的lb是下界,ub是上界,你這個問題就需要這4個位置的參數,其他位置的參數用[]代替就行,由於ga函數默認是求待優化函數的最小值,所以要想求最大值需要把待優化函數取負,即編寫為
function
y=myfun(x)
y=-x.*sin(10*pi.*x)-2;
把這個函數存為myfun.m,然後在命令行里敲
x=ga(@myfun,1,[],[],[],[],[1],[2])
會返回
optimization
terminated:
average
change
in
the
fitness
value
less
than
options.tolfun.
x
=
1.8506
由於遺傳演算法的原理其實是在取值范圍內隨機選擇初值然後進行遺傳,所以可能每次運行給出的值都不一樣,比如再運行一次會返回
optimization
terminated:
average
change
in
the
fitness
value
less
than
options.tolfun.
x
=
1.6507
這個具體原因需要參考遺傳演算法的有關資料

熱點內容
財務信息伺服器搭建 發布:2025-01-11 04:48:09 瀏覽:875
演算法實現過程 發布:2025-01-11 04:43:45 瀏覽:457
瞄準下載ftp 發布:2025-01-11 04:43:44 瀏覽:573
校園電影腳本 發布:2025-01-11 04:32:08 瀏覽:437
現在手機配置最高是什麼 發布:2025-01-11 04:30:37 瀏覽:549
學信網默認密碼是多少 發布:2025-01-11 04:25:45 瀏覽:530
jdbctemplate調用存儲過程 發布:2025-01-11 04:25:41 瀏覽:256
我的世界怎麼不用錢創建伺服器 發布:2025-01-11 04:25:39 瀏覽:283
打卡機資料庫 發布:2025-01-11 04:18:36 瀏覽:916
製作產業項目視頻腳本 發布:2025-01-11 04:10:14 瀏覽:186