當前位置:首頁 » 操作系統 » 遺傳演算法神經網路

遺傳演算法神經網路

發布時間: 2022-01-10 13:48:35

① 遺傳演算法優化概率神經網路的matlab代碼

原理大概是,設置一個初始種群,種群里的個體就是平滑因子,經過遺傳演算法的選擇、交叉、變異後,逐漸找到一個最佳的spread,即為最終結果。

附件是一個GA-BP演算法的程序,雖然不同,但是原理是相近的,可以參考。

遺傳演算法的基本運算過程如下:

a)初始化:設置進化代數計數器t=0,設置最大進化代數T,隨機生成M個個體作為初始群體P(0)。

b)個體評價:計算群體P(t)中各個個體的適應度。

c)選擇運算:將選擇運算元作用於群體。選擇的目的是把優化的個體直接遺傳到下一代或通過配對交叉產生新的個體再遺傳到下一代。選擇操作是建立在群體中個體的適應度評估基礎上的。

d)交叉運算:將交叉運算元作用於群體。遺傳演算法中起核心作用的就是交叉運算元。

e)變異運算:將變異運算元作用於群體。即是對群體中的個體串的某些基因座上的基因值作變動。

群體P(t)經過選擇、交叉、變異運算之後得到下一代群體P(t+1)。

f)終止條件判斷:若t=T,則以進化過程中所得到的具有最大適應度個體作為最優解輸出,終止計算。

② matlab的遺傳演算法 如何調用已經訓練好的神經網路輸出

遺傳演算法優化的BP神經網路建模借鑒別人的程序做出的模擬,最近才有時間整理。
目標:
對y=x1^2+x2^2非線性系統進行建模,用1500組數據對網路進行構建網路,500組數據測試網路。由於BP神經網路初始神經元之間的權值和閾值一般隨機選擇,因此容易陷入局部最小值。本方法使用遺傳演算法優化初始神經元之間的權值和閾值,並對比使用遺傳演算法前後的效果。
步驟:
未經遺傳演算法優化的BP神經網路建模
1、 隨機生成2000組兩維隨機數(x1,x2),並計算對應的輸出y=x1^2+x2^2,前1500組數據作為訓練數據input_train,後500組數據作為測試數據input_test。並將數據存儲在data中待遺傳演算法中使用相同的數據。
2、 數據預處理:歸一化處理。
3、 構建BP神經網路的隱層數,次數,步長,目標。
4、 使用訓練數據input_train訓練BP神經網路net。
5、 用測試數據input_test測試神經網路,並將預測的數據反歸一化處理。
6、 分析預測數據與期望數據之間的誤差。
遺傳演算法優化的BP神經網路建模
1、 讀取前面步驟中保存的數據data;
2、 對數據進行歸一化處理;
3、 設置隱層數目;
4、 初始化進化次數,種群規模,交叉概率,變異概率
5、 對種群進行實數編碼,並將預測數據與期望數據之間的誤差作為適應度函數;
6、 循環進行選擇、交叉、變異、計算適應度操作,直到達到進化次數,得到最優的初始權值和閾值;
7、 將得到最佳初始權值和閾值來構建BP神經網路;
8、 使用訓練數據input_train訓練BP神經網路net;
9、 用測試數據input_test測試神經網路,並將預測的數據反歸一化處理;
10、 分析預測數據與期望數據之間的誤差。

③ 神經網路和遺傳演算法有什麼關系

遺傳演算法是一種智能優化演算法,神經網路是人工智慧演算法的一種。
可以將遺傳演算法用於神經網路的參數優化中。

④ 關於遺傳演算法,模糊數學,神經網路三種數學的區別和聯系

樓上說的不錯,只是你說的這三項里,只有模糊數學是數學的一個分支,遺傳演算法和神經網路都屬於智能計算方法,不屬於數學的一個分支,是涉及到多門學科的一類計算方法。

⑤ 什麼時候使用遺傳演算法 vs 什麼時候使用神經網路

一個遺傳演算法 ( GA ) 搜索技術用於計算找到精確或近似優化和搜索問題的解決方案。神經網路是非線性統計數據建模工具。可以用來建模輸入和輸出之間復雜的關系,或者為數據中的查找模式 。當有一個條目的數量在不同的類中,神經網路可以"學習"分類項還沒有"看見"之前。 比如,人臉識別,語音識別。遺傳演算法可以執行定向搜索解決方案的空間。比如:查找兩點之間的最短路徑。

⑥ 神經網路演算法 遺傳演算法 模糊演算法 哪個好

沒有哪種演算法更好的說法,因為每種演算法都有自己的優勢。只能說某種演算法在處理某種問題時,效果更好更合適。

  1. 神經網路不能說是一種演算法,它是一種數學網路結構,各神經元的權值、閾值是用某種訓練演算法計算出來的。神經網路適用於非線性系統,可用於難以用數學表達式來描述的系統。

  2. 遺傳演算法在全局尋優問題上效果很好,因其收斂速度較快,且不易陷入局部極小點。其中實數編碼法適合與神經網路結合,例如GA-BP神經網路。

  3. 模糊演算法可將一些難以量化的參數模糊處理,並且演算法較簡單,尤其是適用於專家經驗佔主要地位的系統,因為添加一條專家經驗只需往規則庫里添加一條語句即可。用這種演算法要注意區間不能劃得太寬,否則演算法太不精確。

⑦ 關於神經網路,蟻群演算法和遺傳演算法

  1. 神經網路並行性和自適應性很強,應用領域很廣,在任何非線性問題中都可以應用,如控制、信息、預測等各領域都能應用。

  2. 蟻群演算法最開始應用於TSP問題,獲得了成功,後來又廣泛應用於各類組合優化問題。但是該演算法理論基礎較薄弱,演算法收斂性都沒有得到證明,很多參數的設定也僅靠經驗,實際效果也一般,使用中也常常早熟。

  3. 遺傳演算法是比較成熟的演算法,它的全局尋優能力很強,能夠很快地趨近較優解。主要應用於解決組合優化的NP問題。

  4. 這三種演算法可以相互融合,例如GA可以優化神經網路初始權值,防止神經網路訓練陷入局部極小且加快收斂速度。蟻群演算法也可用於訓練神經網路,但一定要使用優化後的蟻群演算法,如最大-最小蟻群演算法和帶精英策略。

⑧ 遺傳演算法跟神經網路之間是什麼關系

神經網路的設計要用到遺傳演算法,遺傳演算法在神經網路中的應用主要反映在3個方面:網路的學習,網路的結構設計,網路的分析。

1.遺傳演算法在網路學習中的應用

在神經網路中,遺傳演算法可用於網路的學習。這時,它在兩個方面起作用

(1)學習規則的優化

用遺傳演算法對神經網路學習規則實現自動優化,從而提高學習速率。

(2)網路權系數的優化

用遺傳演算法的全局優化及隱含並行性的特點提高權系數優化速度。

2.遺傳演算法在網路設計中的應用

用遺傳演算法設計一個優秀的神經網路結構,首先是要解決網路結構的編碼問題;然後才能以選擇、交叉、變異操作得出最優結構。編碼方法主要有下列3種:

(1)直接編碼法

這是把神經網路結構直接用二進制串表示,在遺傳演算法中,「染色體」實質上和神經網路是一種映射關系。通過對「染色體」的優化就實現了對網路的優化。

(2)參數化編碼法

參數化編碼採用的編碼較為抽象,編碼包括網路層數、每層神經元數、各層互連方式等信息。一般對進化後的優化「染色體」進行分析,然後產生網路的結構。

(3)繁衍生長法

這種方法不是在「染色體」中直接編碼神經網路的結構,而是把一些簡單的生長語法規則編碼入「染色體」中;然後,由遺傳演算法對這些生長語法規則不斷進行改變,最後生成適合所解的問題的神經網路。這種方法與自然界生物地生長進化相一致。

3.遺傳演算法在網路分析中的應用

遺傳演算法可用於分析神經網路。神經網路由於有分布存儲等特點,一般難以從其拓撲結構直接理解其功能。遺傳演算法可對神經網路進行功能分析,性質分析,狀態分析。

遺傳演算法雖然可以在多種領域都有實際應用,並且也展示了它潛力和寬廣前景;但是,遺傳演算法還有大量的問題需要研究,目前也還有各種不足。首先,在變數多,取值范圍大或無給定范圍時,收斂速度下降;其次,可找到最優解附近,但無法精確確定最擾解位置;最後,遺傳演算法的參數選擇尚未有定量方法。對遺傳演算法,還需要進一步研究其數學基礎理論;還需要在理論上證明它與其它優化技術的優劣及原因;還需研究硬體化的遺傳演算法;以及遺傳演算法的通用編程和形式等。

⑨ BP演算法、BP神經網路、遺傳演算法、神經網路這四者之間的關系

這四個都屬於人工智慧演算法的范疇。其中BP演算法、BP神經網路和神經網路
屬於神經網路這個大類。遺傳演算法為進化演算法這個大類。
神經網路模擬人類大腦神經計算過程,可以實現高度非線性的預測和計算,主要用於非線性擬合,識別,特點是需要「訓練」,給一些輸入,告訴他正確的輸出。若干次後,再給新的輸入,神經網路就能正確的預測對於的輸出。神經網路廣泛的運用在模式識別,故障診斷中。BP演算法和BP神經網路是神經網路的改進版,修正了一些神經網路的缺點。
遺傳演算法屬於進化演算法,模擬大自然生物進化的過程:優勝略汰。個體不斷進化,只有高質量的個體(目標函數最小(大))才能進入下一代的繁殖。如此往復,最終找到全局最優值。遺傳演算法能夠很好的解決常規優化演算法無法解決的高度非線性優化問題,廣泛應用在各行各業中。差分進化,蟻群演算法,粒子群演算法等都屬於進化演算法,只是模擬的生物群體對象不一樣而已。

熱點內容
多台電腦如何創建存儲伺服器 發布:2024-11-16 10:44:44 瀏覽:340
移動雲伺服器下載 發布:2024-11-16 10:37:23 瀏覽:857
融媒體中心建設專題片拍攝腳本 發布:2024-11-16 10:37:22 瀏覽:934
域控制伺服器怎麼管理vlan 發布:2024-11-16 10:06:49 瀏覽:28
jquery圖片壓縮上傳 發布:2024-11-16 09:54:50 瀏覽:603
安卓如何排查內存泄漏 發布:2024-11-16 09:54:13 瀏覽:200
怎麼設置登錄區域網伺服器憑據 發布:2024-11-16 09:49:46 瀏覽:539
閑置電腦家用下載伺服器 發布:2024-11-16 09:48:28 瀏覽:751
java工程師面試問題 發布:2024-11-16 09:28:36 瀏覽:234
用什麼引擎導出的安卓安裝包不大 發布:2024-11-16 09:09:06 瀏覽:474