當前位置:首頁 » 操作系統 » tsp演算法代碼

tsp演算法代碼

發布時間: 2022-05-28 23:22:05

Ⅰ 求一個TSP的matlab程序

螞蟻演算法實現tsp。其中city是n行2列的矩陣,表示n個城市的經緯度,iter_max是最大循環次數,其餘是螞蟻演算法的參數。

function [Shortest_Route,Shortest_Length]=anttsp(city,iter_max,m,Alpha,Beta,Rho,Q)
n=size(city,1);
d=zeros(n,n);
d=squareform(pdist(city));
Eta=1./d;
Tau=ones(n,n);
Tabu=zeros(m,n);
nC=1;
R_best=zeros(iter_max,n);
L_best=inf.*ones(iter_max,1);

while nC<=iter_max
route=[];
for i=1:ceil(m/n)
route=[route,randperm(n)];
end
Tabu(:,1)=(route(1,1:m))';
for j=2:n
for i=1:m
visited=Tabu(i,1:(j-1));
J=zeros(1,(n-j+1));
P=J;
Jc=1;
for k=1:n
if isempty(find(visited==k, 1))
J(Jc)=k;
Jc=Jc+1;
end
end
for k=1:length(J)
P(k)=(Tau(visited(end),J(k))^Alpha)*(Eta(visited(end),J(k))^Beta);
end
P=P/(sum(P));

Pcum=cumsum(P);
Select=find(Pcum>=rand);
if isempty(Select)%是不是一定能保證Select不為空
Tabu(i,j)=round(1+(n-1)*rand);
else
next_visit=J(Select(1));
Tabu(i,j)=next_visit;
end
end
end
if nC>=2
Tabu(1,:)=R_best(nC-1,:);
end

L=zeros(m,1);
for i=1:m
R=Tabu(i,:);
for j=1:(n-1)
L(i)=L(i)+d(R(j),R(j+1));
end
L(i)=L(i)+d(R(1),R(n));
end
L_best(nC)=min(L);
pos=find(L==L_best(nC));
R_best(nC,:)=Tabu(pos(1),:);
nC=nC+1;

Delta_Tau=zeros(n,n);
for i=1:m
for j=1:(n-1)
Delta_Tau(Tabu(i,j),Tabu(i,j+1))=Delta_Tau(Tabu(i,j),Tabu(i,j+1))+Q/L(i);
end
Delta_Tau(Tabu(i,n),Tabu(i,1))=Delta_Tau(Tabu(i,n),Tabu(i,1))+Q/L(i);
end
Tau=(1-Rho).*Tau+Delta_Tau;
Tabu=zeros(m,n);
end
Pos=find(L_best==min(L_best));
Shortest_Route=R_best(Pos(1),:);
Shortest_Length=L_best(Pos(1));
end

Ⅱ TSP遺傳演算法的求問!!!!

知道每個城市間距離就可以了,先把40乘40的距離矩陣列到excel裡面,然後套入經典的遺傳演算法代碼中運行就可以了。 軟體中的Lingo有經典的tsp代碼,下載破解版的lingo,然後運行就可以了。那個經典代碼只能解決小規模的tsp,大規模的tsp需要用智能演算法。100個城市只需要2分鍾。40個只要幾秒。 你可以到網上搜代碼。

Ⅲ 急求tsp問題演算法的源代碼(c++)

將k=0,lb,x[1:n]=0存入PT
while(PT不為空)
{ 從PT中取出lb值最小元素
k=k+1;
for(i=1; i<=n; i++)
{ x[k]=i;
if(c[i][x[k-1]<+∞)
{ die=0;計算 lb ;
for(j=1; j<k; j++)
if (x[j]=x[k]) {die=1; break; }
if(die=0 and lb<up) 將k,lb,x[1:n]存入PT
}
}
if(k=n) { lb=c[x[1]][x[2]]+…+c[x[n-1]][x[n]]+c[x[1]][x[n]]
if (lb 是PT中最小值) 輸出解,結束
else{ up=lb;刪除 PT中lb>=up元素 }
}
}
哈哈,樓上對了

Ⅳ 貪心演算法TSP問題,有代碼但是看不懂,求注釋

int[] part = new int[3];//這里定義了3個int數組空間 { 0,1,2}

pat[1]=2;//數據的第二位設置為2

Ⅳ 在MATLAB中用蟻群演算法求解TSP問題,在經典的代碼中有Tabu(1,:)=R_best(NC-1,:)。不明白代碼的目的。

正在做。我是這樣理解的:
if NC >= 2
Tabu(1,:) = R_best(NC-1,:);
%把上一次迭代中最佳路線經歷的城市放到本次Tabu的第一行
%相當是加了一個約束條件,如果本次迭代的情況不好,至少不會按照不好的最優解去更新信息素,讓下次的情況更差
end

Ⅵ 遺傳演算法tsp 城市100個 種群個數應該是多少

個體基因數為100,建議種群數為100*(3~5)
遺傳代數為100*(8~10)

Ⅶ 遺傳演算法求解tsp問題的matlab程序

把下面的(1)-(7)依次存成相應的.m文件,在(7)的m文件下運行就可以了
(1) 適應度函數fit.m
function fitness=fit(len,m,maxlen,minlen)
fitness=len;
for i=1:length(len)
fitness(i,1)=(1-(len(i,1)-minlen)/(maxlen-minlen+0.0001)).^m;
end
(2)個體距離計算函數 mylength.m
function len=myLength(D,p)
[N,NN]=size(D);
len=D(p(1,N),p(1,1));
for i=1:(N-1)
len=len+D(p(1,i),p(1,i+1));
end

end
(3)交叉操作函數 cross.m
function [A,B]=cross(A,B)
L=length(A);
if L<10
W=L;
elseif ((L/10)-floor(L/10))>=rand&&L>10
W=ceil(L/10)+8;
else
W=floor(L/10)+8;
end
p=unidrnd(L-W+1);
fprintf('p=%d ',p);
for i=1:W
x=find(A==B(1,p+i-1));
y=find(B==A(1,p+i-1));
[A(1,p+i-1),B(1,p+i-1)]=exchange(A(1,p+i-1),B(1,p+i-1));
[A(1,x),B(1,y)]=exchange(A(1,x),B(1,y));
end

end
(4)對調函數 exchange.m
function [x,y]=exchange(x,y)
temp=x;
x=y;
y=temp;

end
(5)變異函數 Mutation.m
function a=Mutation(A)
index1=0;index2=0;
nnper=randperm(size(A,2));
index1=nnper(1);
index2=nnper(2);
%fprintf('index1=%d ',index1);
%fprintf('index2=%d ',index2);

temp=0;
temp=A(index1);
A(index1)=A(index2);
A(index2)=temp;
a=A;
end
(6)連點畫圖函數 plot_route.m
function plot_route(a,R)
scatter(a(:,1),a(:,2),'rx');
hold on;
plot([a(R(1),1),a(R(length(R)),1)],[a(R(1),2),a(R(length(R)),2)]);
hold on;
for i=2:length(R)
x0=a(R(i-1),1);
y0=a(R(i-1),2);
x1=a(R(i),1);
y1=a(R(i),2);
xx=[x0,x1];
yy=[y0,y1];
plot(xx,yy);
hold on;
end

end
(7)主函數
clear;
clc;
%%%%%%%%%%%%%%%輸入參數%%%%%%%%
N=50; %%城市的個數
M=100; %%種群的個數
C=100; %%迭代次數
C_old=C;
m=2; %%適應值歸一化淘汰加速指數
Pc=0.4; %%交叉概率
Pmutation=0.2; %%變異概率
%%生成城市的坐標
pos=randn(N,2);
%%生成城市之間距離矩陣
D=zeros(N,N);
for i=1:N
for j=i+1:N
dis=(pos(i,1)-pos(j,1)).^2+(pos(i,2)-pos(j,2)).^2;
D(i,j)=dis^(0.5);
D(j,i)=D(i,j);
end
end
%%如果城市之間的距離矩陣已知,可以在下面賦值給D,否則就隨機生成

%%生成初始群體
popm=zeros(M,N);
for i=1:M
popm(i,:)=randperm(N);
end
%%隨機選擇一個種群
R=popm(1,:);

figure(1);
scatter(pos(:,1),pos(:,2),'rx');
axis([-3 3 -3 3]);
figure(2);
plot_route(pos,R); %%畫出種群各城市之間的連線
axis([-3 3 -3 3]);
%%初始化種群及其適應函數
fitness=zeros(M,1);
len=zeros(M,1);
for i=1:M
len(i,1)=myLength(D,popm(i,:));
end
maxlen=max(len);
minlen=min(len);
fitness=fit(len,m,maxlen,minlen);
rr=find(len==minlen);
R=popm(rr(1,1),:);
for i=1:N
fprintf('%d ',R(i));
end
fprintf('\n');
fitness=fitness/sum(fitness);

distance_min=zeros(C+1,1); %%各次迭代的最小的種群的距離
while C>=0
fprintf('迭代第%d次\n',C);
%%選擇操作
nn=0;
for i=1:size(popm,1)
len_1(i,1)=myLength(D,popm(i,:));
jc=rand*0.3;
for j=1:size(popm,1)
if fitness(j,1)>=jc
nn=nn+1;
popm_sel(nn,:)=popm(j,:);
break;
end
end
end
%%每次選擇都保存最優的種群
popm_sel=popm_sel(1:nn,:);
[len_m len_index]=min(len_1);
popm_sel=[popm_sel;popm(len_index,:)];

%%交叉操作
nnper=randperm(nn);
A=popm_sel(nnper(1),:);
B=popm_sel(nnper(2),:);
for i=1:nn*Pc
[A,B]=cross(A,B);
popm_sel(nnper(1),:)=A;
popm_sel(nnper(2),:)=B;
end
%%變異操作
for i=1:nn
pick=rand;
while pick==0
pick=rand;
end
if pick<=Pmutation
popm_sel(i,:)=Mutation(popm_sel(i,:));
end
end
%%求適應度函數
NN=size(popm_sel,1);
len=zeros(NN,1);
for i=1:NN
len(i,1)=myLength(D,popm_sel(i,:));
end
maxlen=max(len);
minlen=min(len);
distance_min(C+1,1)=minlen;
fitness=fit(len,m,maxlen,minlen);
rr=find(len==minlen);
fprintf('minlen=%d\n',minlen);
R=popm_sel(rr(1,1),:);
for i=1:N
fprintf('%d ',R(i));
end
fprintf('\n');
popm=[];
popm=popm_sel;
C=C-1;
%pause(1);
end
figure(3)
plot_route(pos,R);
axis([-3 3 -3 3]);

Ⅷ matlab 模擬退火演算法求解TSP問題源代碼

我這有飛機巡航的代碼,本質上和旅行商問題一樣,代碼如下(非原創):

functionmySim()
disp('模擬退火求巡航路徑');
data=xlsread('飛機巡航數據.xlsx','sheet1','C4:J28');
x=data(:,1:2:8);x=x(:);
y=data(:,2:2:8);y=y(:);
si=[xy];d1=[70,40];
si=[d1;si;d1];
sj=si;
sj=sj*pi/180;%經緯度化為弧度制
d=zeros(102);%距離矩陣d
fori=1:101
forj=i+1:102
temp=cos(sj(i,1)-sj(j,1))*cos(sj(i,2))*cos(sj(j,2))+sin(sj(i,2))*sin(sj(j,2));
d(i,j)=6370*acos(temp);
end
end
d=d+d';%生成距離矩陣
S0=[];%用於存放最優路徑
Sum=inf;%用於存放最優解
rand('state',sum(clock));%設隨機種子
forj=1:1000
S=[11+randperm(100),102];%randperm(n)用於隨機生成1到n的一個排列
temp=0;
fori=1:101
temp=temp+d(S(i),S(i+1));
end
iftemp<Sum
S0=S;Sum=temp;
end
end
e=0.1^30;L=20000;at=0.999;T=1;
%退火過程
fork=1:L
%產生新解
c=2+floor(100*rand(1,2));%floor向下取整,rand(m,n)生成m*n階(0,1)隨機矩陣
c=sort(c);%順序排列
c1=c(1);c2=c(2);
%計算代價函數值
df=d(S0(c1-1),S0(c2))+d(S0(c1),S0(c2+1))-d(S0(c1-1),S0(c1))-d(S0(c2),S0(c2+1));
%接受准則
ifdf<0
S0=[S0(1:c1-1),S0(c2:-1:c1),S0(c2+1:102)];
Sum=Sum+df;
elseifexp(-df/T)>rand(1)
S0=[S0(1:c1-1),S0(c2:-1:c1),S0(c2+1:102)];
Sum=Sum+df;
end
T=T*at;
ifT<e
break;
end
end
%輸出巡航路徑及路徑長度
S0,Sum
%巡航時間
v=xlsread('飛機巡航數據.xlsx','sheet1','A2');
time=Sum/v(1,1)
%畫出路徑圖
r=size(sj,1);
fori=1:r-1;
plot([si(S0(i),1)si(S0(i+1),1)],[si(S0(i),2)si(S0(i+1),2)],'*');
line([si(S0(i),1)si(S0(i+1),1)],[si(S0(i),2)si(S0(i+1),2)]);
holdon
end


Ⅸ C語言遺傳演算法在求解TSP問題 畢業論文+源代碼



摘要
I
Abstract
II


1
第一章
基本遺傳演算法
2
1.1
遺傳演算法的產生及發展
3
1.2
基本原理
3
1.3
遺傳演算法的特點
3
1.4
基本遺傳演算法描述
5
1.5
遺傳演算法構造流程
6
第二章
遺傳演算法的實現技術
6
2.1
編碼方法
7
2.1.1
二進制編碼
7
2.1.2
格雷碼編碼
7
2.1.3
符點數編碼
8
2.1.4
參數編碼
8
2.2
適應度函數
10
2.3
選擇運算元
10
2.4
交叉運算元
10
2.4.1
單點交叉運算元
10
2.4.2
雙點交叉運算元
11
2.4.3
均勻交叉運算元
11
2.4.4
部分映射交叉
11
2.4.5
順序交叉
12
2.5
變異運算元
12
2.6
運行參數
12
2.7
約束條件的處理方法
13
2.8
遺傳演算法流程圖
14
第三章
遺傳演算法在TSP上的應用
15
3.1
TSP問題的建模與描述
15
3.2
對TSP的遺傳基因編碼方法
16
3.3
針對TSP的遺傳操作運算元
17
3.3.1
選擇運算元
17
3.3.1.1
輪盤賭選擇
17
3.3.1.2
最優保存策略選擇
17
3.3.2
交叉運算元
20
3.3.2.1
單點交叉
20
3.3.2.2
部分映射交叉
21
3.3.3
變異運算元
23
3.4
TSP的混和遺傳演算法
26
第四章
實例分析
27
4.1
測試數據
27
4.2
測試結果
27
4.3
結果分析
27


TSP
(Traveling
Salesman
Problem)旅行商問題是一類典型的NP完全問題,遺傳演算法是解決NP問題的一種較理想的方法。文章首先介紹了基本遺傳演算法的基本原理、特點及其基本實現技術;接著針對TSP
問題,論述了遺傳演算法在編碼表示和遺傳運算元(包括選擇運算元、交叉運算元變異運算元這三種運算元)等方面的應用情況,分別指出幾種常用的編碼方法的優點和缺點,並且結合TSP的運行實例詳細分析了基本遺傳演算法的4個運行參數群體大小、遺傳演算法的終止進化代數、交叉概率、變異概率,對遺傳演算法的求解結果和求解效率的影響,經過多次的測試設定出了它們一組比較合理的取值。最後,簡單說明了混合遺傳演算法在求解TSP問題中的應用並對遺傳演算法解決TSP問題的前景提出了展望。
關鍵詞:TSP
遺傳演算法
遺傳運算元
編碼
@@@需要的話按我的名字找我吧

Ⅹ 誰能幫我編個貪心演算法求解TSP問題的C++源代碼

AC代碼,132kb,0ms 記得給分哦~~ #include #include using namespace std; int a[12],n,k,visit[12]; __int64 sum=0; void dfs(int num,int x,int j) { if(num==k) { sum+=x; return; } for(int i=1;ij) { visit[i]=1; if(!x) dfs(num+1,a[i],i...

熱點內容
7z解壓很慢 發布:2025-01-11 16:51:23 瀏覽:940
電腦改文檔伺服器 發布:2025-01-11 16:41:14 瀏覽:869
編譯匯編語言實例 發布:2025-01-11 16:36:55 瀏覽:670
海康ntp校時伺服器地址 發布:2025-01-11 16:34:35 瀏覽:743
伺服器運行超時怎麼辦 發布:2025-01-11 16:34:32 瀏覽:298
人妖迅雷種子ftp 發布:2025-01-11 16:33:04 瀏覽:916
python將列表轉化為字元串 發布:2025-01-11 16:32:11 瀏覽:192
大疆穩定器wifi連接初始密碼多少 發布:2025-01-11 16:25:36 瀏覽:890
專線伺服器運行的項目如何訪問 發布:2025-01-11 16:15:13 瀏覽:720
小米智能攝像機雲存儲 發布:2025-01-11 16:12:08 瀏覽:556