排序演算法ppt
⑴ 如何給幻燈片里的內容進行排序
把內容按需要一點一點的播放出來可以用ppt中的動畫功能實現。
1、打開ppt,在ppt頂部菜單欄上找到「動畫」菜單,然後點擊這個菜單:
⑵ 排序演算法有多少種
排序(Sorting) 是計算機程序設計中的一種重要操作,它的功能是將一個數據元素(或記錄)的任意序列,重新排列成一個關鍵字有序的序列。
排序就是把集合中的元素按照一定的次序排序在一起。一般來說有升序排列和降序排列2種排序,在演算法中有8中基本排序:
(1)冒泡排序;
(2)選擇排序;
(3)插入排序;
(4)希爾排序;
(5)歸並排序;
(6)快速排序;
(7)基數排序;
(8)堆排序;
(9)計數排序;
(10)桶排序。
插入排序
插入排序演算法是基於某序列已經有序排列的情況下,通過一次插入一個元素的方式按照原有排序方式增加元素。這種比較是從該有序序列的最末端開始執行,即要插入序列中的元素最先和有序序列中最大的元素比較,若其大於該最大元素,則可直接插入最大元素的後面即可,否則再向前一位比較查找直至找到應該插入的位置為止。插入排序的基本思想是,每次將1個待排序的記錄按其關鍵字大小插入到前面已經排好序的子序列中,尋找最適當的位置,直至全部記錄插入完畢。執行過程中,若遇到和插入元素相等的位置,則將要插人的元素放在該相等元素的後面,因此插入該元素後並未改變原序列的前後順序。我們認為插入排序也是一種穩定的排序方法。插入排序分直接插入排序、折半插入排序和希爾排序3類。
冒泡排序
冒泡排序演算法是把較小的元素往前調或者把較大的元素往後調。這種方法主要是通過對相鄰兩個元素進行大小的比較,根據比較結果和演算法規則對該二元素的位置進行交換,這樣逐個依次進行比較和交換,就能達到排序目的。冒泡排序的基本思想是,首先將第1個和第2個記錄的關鍵字比較大小,如果是逆序的,就將這兩個記錄進行交換,再對第2個和第3個記錄的關鍵字進行比較,依次類推,重復進行上述計算,直至完成第(n一1)個和第n個記錄的關鍵字之間的比較,此後,再按照上述過程進行第2次、第3次排序,直至整個序列有序為止。排序過程中要特別注意的是,當相鄰兩個元素大小一致時,這一步操作就不需要交換位置,因此也說明冒泡排序是一種嚴格的穩定排序演算法,它不改變序列中相同元素之間的相對位置關系。
選擇排序
選擇排序演算法的基本思路是為每一個位置選擇當前最小的元素。選擇排序的基本思想是,基於直接選擇排序和堆排序這兩種基本的簡單排序方法。首先從第1個位置開始對全部元素進行選擇,選出全部元素中最小的給該位置,再對第2個位置進行選擇,在剩餘元素中選擇最小的給該位置即可;以此類推,重復進行「最小元素」的選擇,直至完成第(n-1)個位置的元素選擇,則第n個位置就只剩唯一的最大元素,此時不需再進行選擇。使用這種排序時,要注意其中一個不同於冒泡法的細節。舉例說明:序列58539.我們知道第一遍選擇第1個元素「5」會和元素「3」交換,那麼原序列中的兩個相同元素「5」之間的前後相對順序就發生了改變。因此,我們說選擇排序不是穩定的排序演算法,它在計算過程中會破壞穩定性。
快速排序
快速排序的基本思想是:通過一趟排序演算法把所需要排序的序列的元素分割成兩大塊,其中,一部分的元素都要小於或等於另外一部分的序列元素,然後仍根據該種方法對劃分後的這兩塊序列的元素分別再次實行快速排序演算法,排序實現的整個過程可以是遞歸的來進行調用,最終能夠實現將所需排序的無序序列元素變為一個有序的序列。
歸並排序
歸並排序演算法就是把序列遞歸劃分成為一個個短序列,以其中只有1個元素的直接序列或者只有2個元素的序列作為短序列的遞歸出口,再將全部有序的短序列按照一定的規則進行排序為長序列。歸並排序融合了分治策略,即將含有n個記錄的初始序列中的每個記錄均視為長度為1的子序列,再將這n個子序列兩兩合並得到n/2個長度為2(當凡為奇數時會出現長度為l的情況)的有序子序列;將上述步驟重復操作,直至得到1個長度為n的有序長序列。需要注意的是,在進行元素比較和交換時,若兩個元素大小相等則不必刻意交換位置,因此該演算法不會破壞序列的穩定性,即歸並排序也是穩定的排序演算法。
⑶ ppt文字排列方法,說一下方法
看看怎麼樣啊,你把之前自帶的文本框刪了,重新插入水平文本框,直接復制進去,按delete鍵調下就好了,我剛試了,絕對PK
⑷ 排序法的排序法的基本步驟
排序法是根據一些特定的標准(例如工作的復雜程度、對組織的貢獻大小等對各個職位的相對價值)進行整體比較,進而將職位按照相對價值的高低排列出一個次序。其基本步驟是:
1、對排序的標准達成共識。雖然排序法是對崗位的整體價值進行評價而排序,但也需要參與評估的人員對什麼樣的「整體價值」更高達成共識,如責任更大,知識技能更高,工作更加復雜,環境因素惡劣等。
2、選定參與排序的職位。如果公司較小可以選取全部職位進行排序。
3、評定人員根據事先確定評判標准,對公司同類崗位的重要性逐一作出評判,最重要的排在第一位,次要的、再次要的順次往下排列。
4、將經過所有評定人員評定的每個崗位的結果加以匯總,得到序號和。然後將序號和除以評定人數,得到每一崗位的平均序數。最後,按平均序數的大小,由小到大評定出各崗位的相對價值的次序。
⑸ 排序演算法的分類
排序(Sorting) 是計算機程序設計中的一種重要操作,它的功能是將一個數據元素(或記錄)的任意序列,重新排列成一個關鍵字有序的序列。
穩定度(穩定性)
一個排序演算法是穩定的,就是當有兩個相等記錄的關鍵字R和S,且在原本的列表中R出現在S之前,在排序過的列表中R也將會是在S之前。
當相等的元素是無法分辨的,比如像是整數,穩定度並不是一個問題。然而,假設以下的數對將要以他們的第一個數字來排序。
(4,1)(3,1)(3,7)(5,6)在這個狀況下,有可能產生兩種不同的結果,一個是依照相等的鍵值維持相對的次序,而另外一個則沒有:
(3,1)(3,7)(4,1)(5,6) (維持次序)
(3,7)(3,1)(4,1)(5,6) (次序被改變)
不穩定排序演算法可能會在相等的鍵值中改變紀錄的相對次序,但是穩定排序演算法從來不會如此。不穩定排序演算法可以被特別地實現為穩定。作這件事情的一個方式是人工擴充鍵值的比較,如此在其他方面相同鍵值的兩個對象間之比較,就會被決定使用在原先數據次序中的條目,當作一個同分決賽。然而,要記住這種次序通常牽涉到額外的空間負擔。
在計算機科學所使用的排序演算法通常被分類為:
(a)計算的復雜度(最差、平均、和最好性能),依據列表(list)的大小(n)。
一般而言,好的性能是 O(nlogn),且壞的性能是 O(n^2)。對於一個排序理想的性能是 O(n)。
而僅使用一個抽象關鍵比較運算的排序演算法總平均上總是至少需要 O(nlogn)。
(b)存儲器使用量(空間復雜度)(以及其他電腦資源的使用)
(c)穩定度:穩定的排序演算法會依照相等的關鍵(換言之就是值)維持紀錄的相對次序。
(d)一般的方法:插入、交換、選擇、合並等等。交換排序包含冒泡排序和快速排序。插入排序包含希爾排序,選擇排序包括堆排序等。
⑹ 幾種排序演算法的比較
一、八大排序演算法的總體比較
4.3、堆的插入:
每次插入都是將新數據放在數組最後。可以發現從這個新數據的父結點到根結點必然為一個有序的數列,然後將這個新數據插入到這個有序數據中
(1)用大根堆排序的基本思想
先將初始數組建成一個大根堆,此對為初始的無序區;
再將最大的元素和無序區的最後一個記錄交換,由此得到新的無序區和有序區,且滿足<=的值;
由於交換後新的根可能違反堆性質,故將當前無序區調整為堆。然後再次將其中最大的元素和該區間的最後一個記錄交換,由此得到新的無序區和有序區,且仍滿足關系的值<=的值,同樣要將其調整為堆;
..........
直到無序區只有一個元素為止;
4.4:應用
尋找M個數中的前K個最小的數並保持有序;
時間復雜度:O(K)[創建K個元素最大堆的時間復雜度] +(M-K)*log(K)[對剩餘M-K個數據進行比較並每次對最大堆進行從新最大堆化]
5.希爾排序
(1)基本思想
先將整個待排序元素序列分割成若乾子序列(由相隔某個「增量」的元素組成的)分別進行直接插入排序,然後依次縮減增量再進行排序,待整個序列中的元素基本有序(增量足夠小)時,再對全體元素進行一次直接插入排序(因為直接插入排序在元素基本有序的情況下,效率很高);
(2)適用場景
比較在希爾排序中是最主要的操作,而不是交換。用已知最好的步長序列的希爾排序比直接插入排序要快,甚至在小數組中比快速排序和堆排序還快,但在涉及大量數據時希爾排序還是不如快排;
6.歸並排序
(1)基本思想
首先將初始序列的n個記錄看成是n個有序的子序列,每個子序列的長度為1,然後兩兩歸並,得到n/2個長度為2的有序子序列,在此基礎上,再對長度為2的有序子序列進行兩兩歸並,得到若干個長度為4的有序子序列,以此類推,直到得到一個長度為n的有序序列為止;
(2)適用場景
若n較大,並且要求排序穩定,則可以選擇歸並排序;
7.簡單選擇排序
(1)基本思想
第一趟:從第一個記錄開始,將後面n-1個記錄進行比較,找到其中最小的記錄和第一個記錄進行交換;
第二趟:從第二個記錄開始,將後面n-2個記錄進行比較,找到其中最小的記錄和第2個記錄進行交換;
...........
第i趟:從第i個記錄開始,將後面n-i個記錄進行比較,找到其中最小的記錄和第i個記錄進行交換;
以此類推,經過n-1趟比較,將n-1個記錄排到位,剩下一個最大記錄直接排在最後;
⑺ 排序演算法的演算法列表
在這個表格中,n是要被排序的紀錄數量以及k是不同鍵值的數量。 冒泡排序(bubble sort) — O(n^2)
雞尾酒排序(Cocktail sort,雙向的冒泡排序) — O(n^2)
插入排序(insertion sort)— O(n^2)
桶排序(bucket sort)— O(n); 需要 O(k) 額外空間
計數排序(counting sort) — O(n+k); 需要 O(n+k) 額外空間
合並排序(merge sort)— O(nlog n); 需要 O(n) 額外空間
原地合並排序— O(n^2)
二叉排序樹排序 (Binary tree sort) — O(nlog n)期望時間; O(n^2)最壞時間; 需要 O(n) 額外空間
鴿巢排序(Pigeonhole sort) — O(n+k); 需要 O(k) 額外空間
基數排序(radix sort)— O(n·k); 需要 O(n) 額外空間
Gnome 排序— O(n^2)
圖書館排序— O(nlog n) with high probability,需要 (1+ε)n額外空間 選擇排序(selection sort)— O(n^2)
希爾排序(shell sort)— O(nlog n) 如果使用最佳的現在版本
組合排序— O(nlog n)
堆排序(heapsort)— O(nlog n)
平滑排序— O(nlog n)
快速排序(quicksort)— O(nlog n) 期望時間,O(n^2) 最壞情況; 對於大的、亂數列表一般相信是最快的已知排序
Introsort— O(nlog n)
Patience sorting— O(nlog n+ k) 最壞情況時間,需要 額外的 O(n+ k) 空間,也需要找到最長的遞增子串列(longest increasing subsequence) Bogo排序— O(n× n!) 期望時間,無窮的最壞情況。
Stupid sort— O(n^3); 遞歸版本需要 O(n^2) 額外存儲器
珠排序(Bead sort) — O(n) or O(√n),但需要特別的硬體
Pancake sorting— O(n),但需要特別的硬體
stooge sort——O(n^2.7)很漂亮但是很耗時
⑻ 七大排序演算法詳解
簡單演算法:
冒泡排序、簡單選擇排序、直接插入排序。
復雜排序:
希爾排序、堆排序、歸並排序、快速排序。
⑼ 幾種常見的排序演算法分析學習
排序演算法一般分為以下幾種: (1)非線性時間比較類排序:交換類排序(快速排序和冒泡排序)、插入類排序(簡單插入排序和希爾排序)、選擇類排序(簡單選擇排序和堆排序)、歸並排序(二路歸並排序和多路歸並排序);(2)線性時間非比較類排序:計數排序、基數排序和桶排序。