機器學習相關演算法包括
⑴ 機器學習非監督機器學習演算法有哪些
非監督機器學習可以分為以下幾類
(1)聚類:聚類學習問題指的是我們想在數據中發現內在的分組,比如以購買行為對顧客進行分組。其又分為K-均值聚類、譜聚類、DBSCAN聚類、模糊聚類、GMM聚類、層次聚類等。
(2)關聯:關聯問題學習問題指的是我們想發現數據的各部分之間的聯系和規則,例如購買X物品的顧客也喜歡購買Y物品。如:Apriori演算法。
非監督學習,該演算法沒有任何目標/結果變數要預測/估計。這個演算法將種群聚類到不同的分組中,例如被廣泛用於將用戶分到不同的用戶組從而對不同的用戶組進行特定的干預。非監督學習的例子有:關聯演算法和k均值演算法。
想要學習了解更多機器學習非監督機器學習的知識,推薦CDA數據分析師課程。CDA數據分析師是在數字經濟大背景和人工智慧時代趨勢下,面向全行業的專業權威國際資格認證,通過 CDA 認證考試者可獲得 CDA 數據分析師中英文認證證書。點擊預約免費試聽課。
⑵ 機器學習有哪些演算法
1. 線性回歸
在統計學和機器學習領域,線性回歸可能是最廣為人知也最易理解的演算法之一。
2. Logistic 回歸
Logistic 回歸是機器學習從統計學領域借鑒過來的另一種技術。它是二分類問題的首選方法。
3. 線性判別分析
Logistic 回歸是一種傳統的分類演算法,它的使用場景僅限於二分類問題。如果你有兩個以上的類,那麼線性判別分析演算法(LDA)是首選的線性分類技術。
4.分類和回歸樹
決策樹是一類重要的機器學習預測建模演算法。
5. 樸素貝葉斯
樸素貝葉斯是一種簡單而強大的預測建模演算法。
6. K 最近鄰演算法
K 最近鄰(KNN)演算法是非常簡單而有效的。KNN 的模型表示就是整個訓練數據集。
7. 學習向量量化
KNN 演算法的一個缺點是,你需要處理整個訓練數據集。
8. 支持向量機
支持向量機(SVM)可能是目前最流行、被討論地最多的機器學習演算法之一。
9. 袋裝法和隨機森林
隨機森林是最流行也最強大的機器學習演算法之一,它是一種集成機器學習演算法。
想要學習了解更多機器學習的知識,推薦CDA數據分析師課程。CDA(Certified Data Analyst),即「CDA 數據分析師」,是在數字經濟大背景和人工智慧時代趨勢下,面向全行業的專業權威國際資格認證,旨在提升全民數字技能,助力企業數字化轉型,推動行業數字化發展。點擊預約免費試聽課。
⑶ 機器學習中需要掌握的演算法有哪些
在學習機器學習中,我們需要掌握很多演算法,通過這些演算法我們能夠更快捷地利用機器學習解決更多的問題,讓人工智慧實現更多的功能,從而讓人工智慧變得更智能。因此,本文為大家介紹一下機器學習中需要掌握的演算法,希望這篇文章能夠幫助大家更深入地理解機器學習。
首先我們為大家介紹的是支持向量機學習演算法。其實支持向量機演算法簡稱SVM,一般來說,支持向量機演算法是用於分類或回歸問題的監督機器學習演算法。SVM從數據集學習,這樣SVM就可以對任何新數據進行分類。此外,它的工作原理是通過查找將數據分類到不同的類中。我們用它來將訓練數據集分成幾類。而且,有許多這樣的線性超平面,SVM試圖最大化各種類之間的距離,這被稱為邊際最大化。而支持向量機演算法那分為兩類,第一就是線性SVM。在線性SVM中,訓練數據必須通過超平面分離分類器。第二就是非線性SVM,在非線性SVM中,不可能使用超平面分離訓練數據。
然後我們給大家介紹一下Apriori機器學習演算法,需要告訴大家的是,這是一種無監督的機器學習演算法。我們用來從給定的數據集生成關聯規則。關聯規則意味著如果發生項目A,則項目B也以一定概率發生,生成的大多數關聯規則都是IF_THEN格式。Apriori機器學習演算法工作的基本原理就是如果項目集頻繁出現,則項目集的所有子集也經常出現。
接著我們給大家介紹一下決策樹機器學習演算法。其實決策樹是圖形表示,它利用分支方法來舉例說明決策的所有可能結果。在決策樹中,內部節點表示對屬性的測試。因為樹的每個分支代表測試的結果,並且葉節點表示特定的類標簽,即在計算所有屬性後做出的決定。此外,我們必須通過從根節點到葉節點的路徑來表示分類。
而隨機森林機器學習演算法也是一個重要的演算法,它是首選的機器學習演算法。我們使用套袋方法創建一堆具有隨機數據子集的決策樹。我們必須在數據集的隨機樣本上多次訓練模型,因為我們需要從隨機森林演算法中獲得良好的預測性能。此外,在這種集成學習方法中,我們必須組合所有決策樹的輸出,做出最後的預測。此外,我們通過輪詢每個決策樹的結果來推導出最終預測。
在這篇文章中我們給大家介紹了關於機器學習的演算法,具體包括隨機森林機器學習演算法、決策樹演算法、apriori演算法、支持向量機演算法。相信大家看了這篇文章以後對機器學習有個更全面的認識,最後祝願大家都學有所成、學成歸來。
⑷ 想了解機器學習,需要知道哪些基礎演算法
⑸ 基於統計和機器學習的演算法有哪些
很多,主要說下監督學習這塊的演算法哈。歡迎討論。
svm,支撐向量機,通過找到樣本空間中的一個超平面,實現樣本的分類,也可以作回歸,主要用在文本分類,圖像識別等領域,詳見:;
lr,邏輯回歸,本質也是線性回歸,通過擬合擬合樣本的某個曲線,然後使用邏輯函數進行區間縮放,但是一般用來分類,主要用在ctr預估、推薦等;
nn,神經網路,通過找到某種非線性模型擬合數據,主要用在圖像等;
nb,樸素貝葉斯,通過找到樣本所屬於的聯合分步,然後通過貝葉斯公式,計算樣本的後驗概率,從而進行分類,主要用來文本分類;
dt,決策樹,構建一棵樹,在節點按照某種規則(一般使用信息熵)來進行樣本劃分,實質是在樣本空間進行塊狀的劃分,主要用來分類,也有做回歸,但更多的是作為弱分類器,用在model embedding中;
rf,隨進森林,是由許多決策樹構成的森林,每個森林中訓練的樣本是從整體樣本中抽樣得到,每個節點需要進行劃分的特徵也是抽樣得到,這樣子就使得每棵樹都具有獨特領域的知識,從而有更好的泛化能力;
gbdt,梯度提升決策樹,實際上也是由多棵樹構成,和rf不同的是,每棵樹訓練樣本是上一棵樹的殘差,這體現了梯度的思想,同時最後的結構是用這所有的樹進行組合或者投票得出,主要用在推薦、相關性等;
knn,k最近鄰,應該是最簡單的ml方法了,對於未知標簽的樣本,看與它最近的k個樣本(使用某種距離公式,馬氏距離或者歐式距離)中哪種標簽最多,它就屬於這類;
⑹ 機器學習有幾種演算法
1. 線性回歸
工作原理:該演算法可以按其權重可視化。但問題是,當你無法真正衡量它時,必須通過觀察其高度和寬度來做一些猜測。通過這種可視化的分析,可以獲取一個結果。
2. 邏輯回歸
根據一組獨立變數,估計離散值。它通過將數據匹配到logit函數來幫助預測事件。
3. 決策樹
利用監督學習演算法對問題進行分類。決策樹是一種支持工具,它使用樹狀圖來決定決策或可能的後果、機會事件結果、資源成本和實用程序。根據獨立變數,將其劃分為兩個或多個同構集。
4. 支持向量機(SVM)
基本原理(以二維數據為例):如果訓練數據是分布在二維平面上的點,它們按照其分類聚集在不同的區域。基於分類邊界的分類演算法的目標是,通過訓練,找到這些分類之間的邊界(直線的――稱為線性劃分,曲線的――稱為非線性劃分)。對於多維數據(如N維),可以將它們視為N維空間中的點,而分類邊界就是N維空間中的面,稱為超面(超面比N維空間少一維)。線性分類器使用超平面類型的邊界,非線性分類器使用超曲面。
5. 樸素貝葉斯
樸素貝葉斯認為每個特徵都是獨立於另一個特徵的。即使在計算結果的概率時,它也會考慮每一個單獨的關系。
它不僅易於使用,而且能有效地使用大量的數據集,甚至超過了高度復雜的分類系統。
6. KNN(K -最近鄰)
該演算法適用於分類和回歸問題。在數據科學行業中,它更常用來解決分類問題。
這個簡單的演算法能夠存儲所有可用的案例,並通過對其k近鄰的多數投票來對任何新事件進行分類。然後將事件分配給與之匹配最多的類。一個距離函數執行這個測量過程。
7. k – 均值
這種無監督演算法用於解決聚類問題。數據集以這樣一種方式列在一個特定數量的集群中:所有數據點都是同質的,並且與其他集群中的數據是異構的。
8. 隨機森林
利用多棵決策樹對樣本進行訓練並預測的一種分類器被稱為隨機森林。為了根據其特性來分類一個新對象,每棵決策樹都被排序和分類,然後決策樹投票給一個特定的類,那些擁有最多選票的被森林所選擇。
9. 降維演算法
在存儲和分析大量數據時,識別多個模式和變數是具有挑戰性的。維數簡化演算法,如決策樹、因子分析、缺失值比、隨機森林等,有助於尋找相關數據。
10. 梯度提高和演演算法
這些演算法是在處理大量數據,以作出准確和快速的預測時使用的boosting演算法。boosting是一種組合學習演算法,它結合了幾種基本估計量的預測能力,以提高效力和功率。
綜上所述,它將所有弱或平均預測因子組合成一個強預測器。
⑺ 常用機器學習方法有哪些
機器學習中常用的方法有:
(1) 歸納學習
符號歸納學習:典型的符號歸納學習有示例學習、決策樹學習。
函數歸納學習(發現學習):典型的函數歸納學習有神經網路學習、示例學習、發現學習、統計學習。
(2) 演繹學習
(3) 類比學習:典型的類比學習有案例(範例)學習。
(4) 分析學習:典型的分析學習有解釋學習、宏操作學習。
(7)機器學習相關演算法包括擴展閱讀:
機器學習常見演算法:
1、決策樹演算法
決策樹及其變種是一類將輸入空間分成不同的區域,每個區域有獨立參數的演算法。決策樹演算法充分利用了樹形模型,根節點到一個葉子節點是一條分類的路徑規則,每個葉子節點象徵一個判斷類別。先將樣本分成不同的子集,再進行分割遞推,直至每個子集得到同類型的樣本,從根節點開始測試,到子樹再到葉子節點,即可得出預測類別。此方法的特點是結構簡單、處理數據效率較高。
2、樸素貝葉斯演算法
樸素貝葉斯演算法是一種分類演算法。它不是單一演算法,而是一系列演算法,它們都有一個共同的原則,即被分類的每個特徵都與任何其他特徵的值無關。樸素貝葉斯分類器認為這些「特徵」中的每一個都獨立地貢獻概率,而不管特徵之間的任何相關性。然而,特徵並不總是獨立的,這通常被視為樸素貝葉斯演算法的缺點。簡而言之,樸素貝葉斯演算法允許我們使用概率給出一組特徵來預測一個類。與其他常見的分類方法相比,樸素貝葉斯演算法需要的訓練很少。在進行預測之前必須完成的唯一工作是找到特徵的個體概率分布的參數,這通常可以快速且確定地完成。這意味著即使對於高維數據點或大量數據點,樸素貝葉斯分類器也可以表現良好。
3、支持向量機演算法
基本思想可概括如下:首先,要利用一種變換將空間高維化,當然這種變換是非線性的,然後,在新的復雜空間取最優線性分類表面。由此種方式獲得的分類函數在形式上類似於神經網路演算法。支持向量機是統計學習領域中一個代表性演算法,但它與傳統方式的思維方法很不同,輸入空間、提高維度從而將問題簡短化,使問題歸結為線性可分的經典解問題。支持向量機應用於垃圾郵件識別,人臉識別等多種分類問題。
⑻ 機器學習演算法指的是什麼
機器學習是一門多領域交叉學科,涉及概率論、統計學、逼近論、凸分析、演算法復雜度理論等多門學科。專門研究計算機怎樣模擬或實現人類的學習行為,以獲取新的知識或技能,重新組織已有的知識結構使之不斷改善自身的性能,您也可以在馬克威演算法交易平台上可以看看這類演算法。
⑼ 機器學習演算法有哪些,最常用是哪些幾種,有什麼優點
樓主肯定對機器學習了解不多才會提這種問題。這問題專業程度看起來和「機器學習工程師」這詞彙一樣。
機器學習,基礎的PCA模型理論,貝葉斯,boost,Adaboost,
模式識別中的各種特徵,諸如Hog,Haar,SIFT等
深度學習里的DBN,CNN,BP,RBM等等。
非專業出身,只是略懂一點。
沒有常用的,只是針對需求有具體的設計,或者需要自己全新設計一個合適的演算法,現在最熱門的算是CNN(convolutional neural networks)卷積神經網路了。
優點:不需要訓練獲取特徵,在學習過程中自動提取圖像中的特徵,免去了常規方法中,大量訓練樣本的時間。在樣本足夠大的情況下,能夠得到非常精確的識別結果。一般都能95%+的正確率。
缺點:硬體要求高,CUDA的並行框架算是用的很火的了。但是一般的台式機跑一個Demo花費的時間長資源佔用高。不過這也是這塊演算法的通病。
⑽ 目前最流行的機器學習演算法是什麼
毫無疑問,機器學習在過去幾年越來越受歡迎。由於大數據是目前技術行業最熱門的趨勢,機器學習是非常強大的,可以根據大量數據進行預測或計算推理。
如果你想學習機器演算法,要從何下手呢?
監督學習
1. 決策樹:決策樹是一種決策支持工具,使用的決策及其可能產生的後果,包括隨機事件的結果,資源消耗和效用的樹狀圖或模型。
從業務決策的角度來看,決策樹是人們必須要選擇是/否的問題,以評估大多數時候作出正確決策的概率。它允許您以結構化和系統的方式來解決問題,以得出邏輯結論。
2.樸素貝葉斯分類:樸素貝葉斯分類器是一種簡單的概率分類器,基於貝葉斯定理,其特徵之間具有強大(樸素)的獨立性假設。
特徵圖像是方程 - P(A | B)是後驗概率,P(B | A)是似然度,P(A)是類先驗概率,P(B)是預測先驗概率。
一些現實世界的例子是:
判斷郵件是否為垃圾郵件
分類技術,將新聞文章氛圍政治或體育類
檢查一段表達積極情緒或消極情緒的文字
用於面部識別軟體
3.普通最小二乘回歸:如果你了解統計學,你可能已經聽說過線性回歸。最小二乘法是一種執行線性回歸的方法。
您可以將線性回歸視為擬合直線穿過點狀分布的任務。有多種可能的策略可以做到這一點,「普通最小二乘法」策略就像這樣 -你可以畫一條線,然後把每個數據點,測量點和線之間的垂直距離,添加上去;擬合線將是距離總和的盡可能小的線。
線性是指您正在使用的模型來迎合數據,而最小二乘可以最小化線性模型誤差。
4.邏輯回歸: Logistic回歸是一個強大的統計學方法,用一個或多個解釋變數建模二項式結果。它通過使用邏輯函數估計概率,來衡量分類因變數與一個或多個獨立變數之間的關系,後者是累積邏輯分布。
邏輯回歸用於生活中:
信用評級
衡量營銷活動的成功率
預測某一產品的收入
某一天會有地震嗎
5.支持向量機: SVM是二元分類演算法。給定N維空間中兩種種類型的點,SVM生成(N-1)維的超平面將這些點分成2組。
假設你有一些可以線性分離的紙張中的兩種類型的點。SVM將找到一條直線,將這些點分成兩種類型,並盡可能遠離所有這些點。
在規模上,使用SVM解決的一些特大的問題(包括適當修改的實現)是:廣告、人類基因剪接位點識別、基於圖像的性別檢測,大規模圖像分類...
6.集成方法:集成方法是構建一組分類器的學習演算法,然後通過對其預測進行加權投票來對新的數據點進行分類。原始的集成方法是貝葉斯平均法,但更新的演算法包括糾錯輸出編碼、bagging和boosting。
那麼集成方法如何工作,為什麼它們優於單個模型?
均衡偏差:如果你均衡了大量的傾向民主黨的投票和大量傾向共和黨的投票,你總會得到一個不那麼偏頗的結果。
降低方差:集合大量模型的參考結果,噪音會小於單個模型的單個結果。在金融領域,這被稱為投資分散原則(diversification)——一個混搭很多種股票的投資組合,比單獨的股票更少變故。
不太可能過度擬合:如果您有單個模型不完全擬合,您以簡單的方式(平均,加權平均,邏輯回歸)結合每個模型建模,那麼一般不會發生過擬合。
無監督學習
7. 聚類演算法:聚類是對一組對象進行分組的任務,使得同一組(集群)中的對象彼此之間比其他組中的對象更相似。
每個聚類演算法是不同的,比如:
基於Centroid的演算法
基於連接的演算法
基於密度的演算法
概率
降維
神經網路/深度學習
8. 主成分分析: PCA是使用正交變換將可能相關變數的觀察值轉換為主成分的線性不相關變數值的一組統計過程。
PCA的一些應用包括壓縮、簡化數據、便於學習、可視化。請注意,領域知識在選擇是否繼續使用PCA時非常重要。數據嘈雜的情況(PCA的所有組件都有很大差異)的情況不適用。
9.奇異值分解:在線性代數中,SVD是真正復雜矩陣的因式分解。對於給定的m * n矩陣M,存在分解,使得M =UΣV,其中U和V是酉矩陣,Σ是對角矩陣。
PCA實際上是SVD的簡單應用。在計算機視覺技術中,第一個人臉識別演算法使用PCA和SVD,以將面部表示為「特徵臉」的線性組合,進行降維,然後通過簡單的方法將面部匹配到身份;雖然這種方法更復雜,但仍然依賴於類似的技術。
10.獨立成分分析: ICA是一種統計技術,用於揭示隨機變數、測量或信號集合的隱藏因素。ICA定義了觀察到的多變數數據的生成模型,通常將其作為大型樣本資料庫。
在模型中,假設數據變數是一些未知潛在變數的線性混合,混合系統也是未知的。潛變數被假定為非高斯和相互獨立的,它們被稱為觀測數據的獨立成分。
ICA與PCA相關,但它是一種更強大的技術,能夠在這些經典方法完全失敗時找到潛在的源因素。其應用包括數字圖像、文檔資料庫、經濟指標和心理測量。