遺傳演算法優化問題
『壹』 遺傳演算法優化問題中,有關線性約束(非線性約束)怎麼在程序中實現
優化問題中解決約束一般採用罰函數的方法,這樣的論文很多,找一篇看看就知道怎麼了。大致意思是,要是某個個體離約束很近,或者就在約束上(滿足某個約束條件),那演算法就「懲罰」他一下,懲罰的措施多樣,可以讓這個個體參數全部重置,也可以讓這個個體等於某個極限值。
其他的約束方法大同小異。
『貳』 關於遺傳演算法優化BP神經網路的問題
程序:
1、未經遺傳演算法優化的BP神經網路建模
clear;
clc;
%%%%%%%%%%%%%輸入參數%%%%%%%%%%%%%%
N=2000; %數據總個數
M=1500; %訓練數據
%%%%%%%%%%%%%訓練數據%%%%%%%%%%%%%%
for i=1:N
input(i,1)=-5+rand*10;
input(i,2)=-5+rand*10;
end
output=input(:,1).^2+input(:,2).^2;
save data input output
load data.mat
%從1到N隨機排序
k=rand(1,N);
[m,n]=sort(k);
%找出訓練數據和預測數據
input_train=input(n(1:M),:)';
output_train=output(n(1:M),:)';
input_test=input(n((M+1):N),:)';
output_test=output(n((M+1):N),:)';
%數據歸一化
[inputn,inputs]=mapminmax(input_train);
[outputn,outputs]=mapminmax(output_train);
%構建BP神經網路
net=newff(inputn,outputn,5);
net.trainParam.epochs=100;
net.trainParam.lr=0.1;
net.trainParam.goal=0.0000004;
%BP神經網路訓練
net=train(net,inputn,outputn);
%測試樣本歸一化
inputn_test=mapminmax('apply',input_test,inputs);
%BP神經網路預測
an=sim(net,inputn_test);
%%網路得到數據反歸一化
BPoutput=mapminmax('reverse',an,outputs);
figure(1)
%plot(BPoutput,':og');
scatter(1:(N-M),BPoutput,'rx');
hold on;
%plot(output_test,'-*');
scatter(1:(N-M),output_test,'o');
legend('預測輸出','期望輸出','fontsize',12);
title('BP網路預測輸出','fontsize',12);
xlabel('樣本','fontsize',12);
xlabel('優化前輸出的誤差','fontsize',12);
figure(2)
error=BPoutput-output_test;
plot(1:(N-M),error);
xlabel('樣本','fontsize',12);
ylabel('優化前輸出的誤差','fontsize',12);
%save net net inputs outputs
2、遺傳演算法優化的BP神經網路建模
(1)主程序
%清空環境變數
clc
clear
%讀取數據
load data.mat
%節點個數
inputnum=2;
hiddennum=5;
outputnum=1;
%訓練數據和預測數據
input_train=input(1:1500,:)';
input_test=input(1501:2000,:)';
output_train=output(1:1500)';
output_test=output(1501:2000)';
%選連樣本輸入輸出數據歸一化
[inputn,inputps]=mapminmax(input_train);
[outputn,outputps]=mapminmax(output_train);
%構建網路
net=newff(inputn,outputn,hiddennum);
%% 遺傳演算法參數初始化
maxgen=10; %進化代數,即迭代次數
sizepop=30; %種群規模
pcross=[0.3]; %交叉概率選擇,0和1之間
pmutation=[0.1]; %變異概率選擇,0和1之間
%節點總數
numsum=inputnum*hiddennum+hiddennum+hiddennum*outputnum+outputnum;
lenchrom=ones(1,numsum);
bound=[-3*ones(numsum,1) 3*ones(numsum,1)]; %數據范圍
%------------------------------------------------------種群初始化------------------------------%------------------
--------
indivials=struct('fitness',zeros(1,sizepop), 'chrom',[]); %將種群信息定義為一個結構體
%avgfitness=[]; %每一代種群的平均適應度
bestfitness=[]; %每一代種群的最佳適應度
bestchrom=[]; %適應度最好的染色體
%初始化種群
for i=1:sizepop
%隨機產生一個種群
indivials.chrom(i,:)=Code(lenchrom,bound); %編碼
x=indivials.chrom(i,:);
%計算適應度
indivials.fitness(i)=fun(x,inputnum,hiddennum,outputnum,net,inputn,outputn); %染色體的適應度
end
%找最好的染色體
[bestfitness bestindex]=min(indivials.fitness);
bestchrom=indivials.chrom(bestindex,:); %最好的染色體
%avgfitness=sum(indivials.fitness)/sizepop; %染色體的平均適應度
% 記錄每一代進化中最好的適應度和平均適應度
%trace=[avgfitness bestfitness];
%% 迭代求解最佳初始閥值和權值
% 進化開始
for i=1:maxgen
i
% 選擇
indivials=Select(indivials,sizepop);
% avgfitness=sum(indivials.fitness)/sizepop;
%交叉
indivials.chrom=Cross(pcross,lenchrom,indivials.chrom,sizepop,bound);
% 變異
indivials.chrom=Mutation(pmutation,lenchrom,indivials.chrom,sizepop,i,maxgen,bound);
% 計算適應度
for j=1:sizepop
x=indivials.chrom(j,:); %解碼
indivials.fitness(j)=fun(x,inputnum,hiddennum,outputnum,net,inputn,outputn);
end
%找到最小和最大適應度的染色體及它們在種群中的位置
[newbestfitness,newbestindex]=min(indivials.fitness);
[worestfitness,worestindex]=max(indivials.fitness);
% 代替上一次進化中最好的染色體
if bestfitness>newbestfitness
bestfitness=newbestfitness;
bestchrom=indivials.chrom(newbestindex,:);
end
indivials.chrom(worestindex,:)=bestchrom;
indivials.fitness(worestindex)=bestfitness;
%avgfitness=sum(indivials.fitness)/sizepop;
% trace=[trace;avgfitness bestfitness]; %記錄每一代進化中最好的適應度和平均適應度
end
%% 遺傳演算法結果分析
%figure(3)
%[r c]=size(trace);
%plot([1:r]',trace(:,2),'b--');
%title(['適應度曲線 ' '終止代數=' num2str(maxgen)]);
%xlabel('進化代數');ylabel('適應度');
%legend('平均適應度','最佳適應度');
disp('適應度 變數');
x=bestchrom;
%% 把最優初始閥值權值賦予網路預測
% %用遺傳演算法優化的BP網路進行值預測
w1=x(1:inputnum*hiddennum);
B1=x(inputnum*hiddennum+1:inputnum*hiddennum+hiddennum);
w2=x(inputnum*hiddennum+hiddennum+1:inputnum*hiddennum+hiddennum+hiddennum*outputnum);
B2=x
(inputnum*hiddennum+hiddennum+hiddennum*outputnum+1:inputnum*hiddennum+hiddennum+hiddennum*outputnum+outputnum);
net.iw{1,1}=reshape(w1,hiddennum,inputnum);
net.lw{2,1}=reshape(w2,outputnum,hiddennum);
net.b{1}=reshape(B1,hiddennum,1);
net.b{2}=B2;
%% BP網路訓練
%網路進化參數
net.trainParam.epochs=100;
net.trainParam.lr=0.1;
%net.trainParam.goal=0.00001;
%網路訓練
[net,per2]=train(net,inputn,outputn);
%% BP網路預測
%數據歸一化
inputn_test=mapminmax('apply',input_test,inputps);
an=sim(net,inputn_test);
test_simu=mapminmax('reverse',an,outputps);
error=test_simu-output_test;
%figure(4);
hold on;plot(1:500,error,'r');
legend('優化前的誤差','優化後的誤差','fontsize',12)
(2)編碼子程序code.m
function ret=Code(lenchrom,bound)
%本函數將變數編碼成染色體,用於隨機初始化一個種群
% lenchrom input : 染色體長度
% bound input : 變數的取值范圍
% ret output: 染色體的編碼值
flag=0;
while flag==0
pick=rand(1,length(lenchrom));
ret=bound(:,1)'+(bound(:,2)-bound(:,1))'.*pick; %線性插值,編碼結果以實數向量存入ret中
flag=test(lenchrom,bound,ret); %檢驗染色體的可行性
end
(3)適應度函數fun.m
function error = fun(x,inputnum,hiddennum,outputnum,net,inputn,outputn)
%該函數用來計算適應度值
%x input 個體
%inputnum input 輸入層節點數
%outputnum input 隱含層節點數
%net input 網路
%inputn input 訓練輸入數據
%outputn input 訓練輸出數據
%error output 個體適應度值
%提取
w1=x(1:inputnum*hiddennum);
B1=x(inputnum*hiddennum+1:inputnum*hiddennum+hiddennum);
w2=x(inputnum*hiddennum+hiddennum+1:inputnum*hiddennum+hiddennum+hiddennum*outputnum);
B2=x(inputnum*hiddennum+hiddennum+hiddennum*outputnum+1:inputnum*hiddennum+hiddennum+hiddennum*outputnum+outputnum);
net=newff(inputn,outputn,hiddennum);
%網路進化參數
net.trainParam.epochs=20;
net.trainParam.lr=0.1;
net.trainParam.goal=0.00001;
net.trainParam.show=100;
net.trainParam.showWindow=0;
%網路權值賦值
net.iw{1,1}=reshape(w1,hiddennum,inputnum);
net.lw{2,1}=reshape(w2,outputnum,hiddennum);
net.b{1}=reshape(B1,hiddennum,1);
net.b{2}=B2;
%網路訓練
net=train(net,inputn,outputn);
an=sim(net,inputn);
error=sum(abs(an-outputn));
(4)選擇操作Select.m
function ret=select(indivials,sizepop)
% 該函數用於進行選擇操作
% indivials input 種群信息
% sizepop input 種群規模
% ret output 選擇後的新種群
%求適應度值倒數
[a bestch]=min(indivials.fitness);
%b=indivials.chrom(bestch);
%c=indivials.fitness(bestch);
fitness1=10./indivials.fitness; %indivials.fitness為個體適應度值
%個體選擇概率
sumfitness=sum(fitness1);
sumf=fitness1./sumfitness;
%採用輪盤賭法選擇新個體
index=[];
for i=1:sizepop %sizepop為種群數
pick=rand;
while pick==0
pick=rand;
end
for i=1:sizepop
pick=pick-sumf(i);
if pick<0
index=[index i];
break;
end
end
end
%index=[index bestch];
%新種群
indivials.chrom=indivials.chrom(index,:); %indivials.chrom為種群中個體
indivials.fitness=indivials.fitness(index);
%indivials.chrom=[indivials.chrom;b];
%indivials.fitness=[indivials.fitness;c];
ret=indivials;
(5)交叉操作cross.m
function ret=Cross(pcross,lenchrom,chrom,sizepop,bound)
%本函數完成交叉操作
% pcorss input : 交叉概率
% lenchrom input : 染色體的長度
% chrom input : 染色體群
% sizepop input : 種群規模
% ret output : 交叉後的染色體
for i=1:sizepop %每一輪for循環中,可能會進行一次交叉操作,染色體是隨機選擇的,交叉位置也是隨機選擇的,%但該輪for循環中是否進行交叉操作則由交叉概率決定(continue控制)
% 隨機選擇兩個染色體進行交叉
pick=rand(1,2);
while prod(pick)==0
pick=rand(1,2);
end
index=ceil(pick.*sizepop);
% 交叉概率決定是否進行交叉
pick=rand;
while pick==0
pick=rand;
end
if pick>pcross
continue;
end
flag=0;
while flag==0
% 隨機選擇交叉位
pick=rand;
while pick==0
pick=rand;
end
pos=ceil(pick.*sum(lenchrom)); %隨機選擇進行交叉的位置,即選擇第幾個變數進行交叉,注意:兩個染色體交叉的位置相同
pick=rand; %交叉開始
v1=chrom(index(1),pos);
v2=chrom(index(2),pos);
chrom(index(1),pos)=pick*v2+(1-pick)*v1;
chrom(index(2),pos)=pick*v1+(1-pick)*v2; %交叉結束
flag1=test(lenchrom,bound,chrom(index(1),:)); %檢驗染色體1的可行性
flag2=test(lenchrom,bound,chrom(index(2),:)); %檢驗染色體2的可行性
if flag1*flag2==0
flag=0;
else flag=1;
end %如果兩個染色體不是都可行,則重新交叉
end
end
ret=chrom;
(6)變異操作Mutation.m
function ret=Mutation(pmutation,lenchrom,chrom,sizepop,num,maxgen,bound)
% 本函數完成變異操作
% pcorss input : 變異概率
% lenchrom input : 染色體長度
% chrom input : 染色體群
% sizepop input : 種群規模
% opts input : 變異方法的選擇
% pop input : 當前種群的進化代數和最大的進化代數信息
% bound input : 每個個體的上屆和下屆
% maxgen input :最大迭代次數
% num input : 當前迭代次數
% ret output : 變異後的染色體
for i=1:sizepop %每一輪for循環中,可能會進行一次變異操作,染色體是隨機選擇的,變異位置也是隨機選擇的,
%但該輪for循環中是否進行變異操作則由變異概率決定(continue控制)
% 隨機選擇一個染色體進行變異
pick=rand;
while pick==0
pick=rand;
end
index=ceil(pick*sizepop);
% 變異概率決定該輪循環是否進行變異
pick=rand;
if pick>pmutation
continue;
end
flag=0;
while flag==0
% 變異位置
pick=rand;
while pick==0
pick=rand;
end
pos=ceil(pick*sum(lenchrom)); %隨機選擇了染色體變異的位置,即選擇了第pos個變數進行變異
pick=rand; %變異開始
fg=(rand*(1-num/maxgen))^2;
if pick>0.5
chrom(i,pos)=chrom(i,pos)+(bound(pos,2)-chrom(i,pos))*fg;
else
chrom(i,pos)=chrom(i,pos)-(chrom(i,pos)-bound(pos,1))*fg;
end %變異結束
flag=test(lenchrom,bound,chrom(i,:)); %檢驗染色體的可行性
end
end
ret=chrom;
『叄』 遺傳演算法有哪些應用
遺傳演算法的搜索策略和優化搜索方法是不依附於梯度信息及其它的輔助知識,而只需要影響搜索方向的目標函數和相應的適應度函數,所以遺傳演算法提供了一種求解復雜系統問題的通用框架,它不依賴於問題的具體領域,對問題的種類有很強的魯棒性,所以廣泛應用於許多科學。遺傳演算法的應用領域有很多,下面針對一些主要的應用領域做簡單的介紹。
1.函數優化:該領域是遺傳演算法得以應用的經典領域,同時它也是遺傳演算法進行性能評價的常用算例,許多人構造出了各種各樣復雜形式的測試函數:連續函數和離散函數、凸函數和凹函數、低維函數和高維函數、單峰函數和多峰函數等。對於函數優化問題,如一些非線性、多模型、多目標等函數問題用遺傳演算法很容易得到較好的結果,而用其他演算法則較難。
2.組合優化:由於組合優化問題的搜索空間在不斷地增大,有時用枚舉法很難得到最優解。對這類復雜的問題,人們已經意識到應把主要精力放在尋求滿意解上,而遺傳演算法是尋求這種滿意解的最佳工具之一。實踐證明,遺傳演算法對於組合優化中的NP問題非常有效。比如,在旅行商問題、裝箱問題及圖形劃分等問題上,已經成功得以應用了遺傳演算法。
『肆』 遺傳演算法怎麼解決單目標優化問題
是不是像求函數最值那樣子?建議你了解一下遺傳演算法的實數編碼,這個對於求函數最值很方便,不用像二進制那樣需要轉換。 簡單介紹一下思路: 最重要的是確定適應度函數,只要確定這個函數就很容易了,就用你不會編程,直接調用matlab的工具箱就行了。 1st.設置種群規模,並初始化種群p,並計算各個個體的適應度。 例如,20個個體,每個個體包含5個變數,x1,x2,x3,x4,x5. 如果你用matlab來編程的話,這個可以很容易實現,會用到random('unif',a,b)這個函數吧。 例如x1的取值范圍是[0,1],那麼x1=random('unif',0,1). 2nd.採用輪盤賭選出可以產生後代的父本,p_parents。 額,輪盤賭的實質就是適應度大的被選出的概率大。這個不難,但說起來比較長,你可以自己去看一下。 3rd.雜交過程的思路隨機將p_parents中的個體隨機兩兩配對,然後隨機產生一個1到n的數(n為變數的個數),設為i,交換每對父本中i之後的變數值。交換以後的p_parents成為後代p_offspring. 這里變起來有點點復雜,不過只要耐心一點,編好配對過程和交換過程。 4th.變異過程,這個比較簡單,不過需要自己把握的較好。 基本的思路是設置一個概率,例如0.05,然後產生一個隨機數如果隨機數比0.05小那麼這個變數值就要產生微小的增加或減少。 這個變異過程要歷遍p_offspring所有的變數喔。 5th.將p和p_offspring合並起來,然後選出適應度大的,重新構成一個如原始種群規模相等的種群。
『伍』 遺傳演算法能不能優化演算法
能啊,這種叫Genetic Programming(遺傳編程)。參見A Field Guide to Genetic Programming。
主要的思想就是,為了解決目標問題,設計一個小的DSL,然後遺傳演算法要演化的就是這門DSL的程序,你需要實現這個DSL的解釋器,以及評估程序質量的fitness function和實現交叉/變異等操作的運算元。
『陸』 用遺傳演算法求整個實數域上的優化問題
我覺得這個問題不能用遺傳解決。
所以如果要解決實數域上的優化問題,只能用其他方法找到包含最有解的某個有限的解空間啊。然後在進行遺傳優化。
遺傳演算法又不是萬能的,每個方法都有其限制,而且遺傳演算法實則是一個搜索演算法,你要它在無限的空間上進行搜索,是不是不切實際了。解決實際問題要往往很多方法綜合應用。
『柒』 用matlab遺傳演算法解決函數優化問題
用ga函數,ga函數就是遺傳演算法的函數,它的調用格式為:
X = GA(FITNESSFCN,NVARS,A,b,Aeq,beq,lb,ub,NONLCON,options)
FITNESSFCN就是待優化函數,NVARS為變數個數,然後後面的lb是下界,ub是上界,你這個問題就需要這4個位置的參數,其他位置的參數用[]代替就行,由於ga函數默認是求待優化函數的最小值,所以要想求最大值需要把待優化函數取負,即編寫為
function y=myfun(x)
y=-x.*sin(10*pi.*x)-2;
把這個函數存為myfun.m,然後在命令行里敲
x=ga(@myfun,1,[],[],[],[],[1],[2])
會返回
Optimization terminated: average change in the fitness value less than options.TolFun.
x =
1.8506
由於遺傳演算法的原理其實是在取值范圍內隨機選擇初值然後進行遺傳,所以可能每次運行給出的值都不一樣,比如再運行一次會返回
Optimization terminated: average change in the fitness value less than options.TolFun.
x =
1.6507
這個具體原因需要參考遺傳演算法的有關資料
『捌』 遺傳演算法能否解決同時包含整數約束和等式約束的優化問題
針對遺傳演算法較難處理含等式約束的優化問題,在設計變數獨立性分析的基礎上對等式約束採用了降維處理方法,不僅使等式約束在優化時始終嚴格滿足,而且經降維處理後優化問題僅包含不等式約束;然後,借鑒多目標優化思想,提出了從個體違反約束程度和違反次數2方面同時對種群進行排序,使演算法對個體的排序和選擇更符合實際.實例驗證了該演算法的有效性和可行性.
『玖』 如何用遺傳演算法實現多變數的最優化問題
將多個變數的數值編碼編排進去,進行組合,只需要增長基因個體的長度,但是要明確每個變數具體的位置,然後讓每個變數轉化成二進制的等長編碼,組合在一起,就可以來運算了。
具體操作步驟如下:
1、首先要利用一個矩陣去跟蹤每組迭代的結果的大小:
2、然後,要構造一個解碼矩陣FieldD,由bs2rv函數將種群Chrom根據解碼矩陣換成時值向量,返回十進制的矩陣:
且FieldD矩陣的結構如下:
3、要先將目標函數顯示出來,看看基本的函數的形式:
4、設計遺傳演算法的參數估計:
5、經遺傳演算法之後,這個最優解的位置是:(圖中標記藍點的位置)
『拾』 用遺傳演算法工具箱求解一個多目標優化問題,現在需要一個matlab程序,求高人指點
用遺傳演算法工具箱求解一個多目標優化問題的步驟:
1、根據題意,建立自定義目標函數,ga_fun1(x)
2、在命令窗口中,輸入
>> optimtool %調用遺傳演算法工具箱
3、在遺傳演算法工具箱界面中,分別對Fitnessfunction框內輸入@ga_fun1();A框內輸入[1,1,1];b框內輸入16;Aeq框內輸入[];beq框內輸入[];Lower框內輸入[0,0,0];Upper框內輸入[];
4、單擊Start。得到x=4.508 y=2.513 z=1.912值。