密度峰演算法
『壹』 pso的演算法結構
對微粒群演算法結構的改進方案有很多種,對其可分類為:採用多個子種群;改進微粒學習對象的選取策略;修改微粒更新迭代公式;修改速度更新策略;修改速度限制方法、位置限制方法和動態確定搜索空間;與其他搜索技術相結合;以及針對多模問題所作的改進。
第一類方案是採用多個子種群。柯晶考慮優化問題對收斂速度和尋優精度的雙重要求並借鑒多群體進化演算法的思想,將尋優微粒分成兩組,一組微粒採用壓縮因子的局部模式PSO演算法,另一組微粒採用慣性權重的全局模式PSO演算法,兩組微粒之間採用環形拓撲結構。對於高維優化問題,PSO演算法需要的微粒個數很多,導致計算復雜度常常很高,並且很難得到好的解。因此,出現了一種協作微粒群演算法(Cooperative ParticleSwarm Optimizer, CPSO-H),將輸入向量拆分成多個子向量,並對每個子向量使用一個微粒群來進行優化。雖然CPSO-H演算法使用一維群體來分別搜索每一維,但是這些搜索結果被一個全局群體集成起來之後,在多模問題上的性能與原始PSO演算法相比有很大的改進。Chow使用多個互相交互的子群,並引入相鄰群參考速度。馮奇峰提出將搜索區域分區,使用多個子群並通過微粒間的距離來保持多樣性。陳國初將微粒分成飛行方向不同的兩個分群,其中一分群朝最優微粒飛行,另一分群微粒朝相反方向飛行;飛行時,每一微粒不僅受到微粒本身飛行經驗和本分群最優微粒的影響,還受到全群最優微粒的影響。Niu在PSO演算法中引入主—從子群模式,提出一種多種群協作PSO演算法。Seo提出一種多組PSO演算法(Multigrouped PSO),使用N組微粒來同時搜索多模問題的N個峰。Selleri使用多個獨立的子群,在微粒速度的更新方程中添加了一些新項,分別使得微粒向子群歷史最優位置運動,或者遠離其他子群的重心。王俊年借鑒遞階編碼的思想,構造出一種多種群協同進化PSO演算法。高鷹借鑒生態學中環境和種群競爭的關系,提出一種基於種群密度的多種群PSO演算法。
第二類方案是改進微粒學習對象的選取策略。Al-kazemi提出多階段PSO演算法,將微粒按不同階段的臨時搜索目標分組,這些臨時目標允許微粒向著或背著它自己或全局最好位置移動。Ting對每個微粒的pBest進行操作,每一維從其他隨機確定的維度學習,之後如果新的pBest更好則替換原pBest;該文還比較了多種不同學習方式對應的PSO演算法的性能。Liang提出一種新穎的學習策略CLPSO,利用所有其他微粒的歷史最優信息來更新微粒的速度;每個微粒可以向不同的微粒學習,並且微粒的每一維可以向不同的微粒學習。該策略能夠保持群體的多樣性,防止早熟收斂,可以提高PSO演算法在多模問題上的性能;通過實驗將該演算法與其它幾種PSO演算法的變種進行比較,實驗結果表明該演算法在解決多模復雜問題時效果很好。Zhao在PSO演算法中使用適應值最好的n個值來代替速度更新公式中的gBest。Abdelbar提出一種模糊度量,從而使得每個鄰域中有多個適應值最好的微粒可以影響其它微粒。Wang也採用多個適應值最好的微粒信息來更新微粒速度,並提出一種模糊規則來自適應地確定參數。崔志華提出一種動態調整的改進PSO演算法,在運行過程中動態調整極限位置,使得每個微粒的極限位置在其所經歷的最好位置與整體最好位置所形成的動態圓中分布。與原始PSO演算法相反,有一類方法是遠離最差位置而非飛向最優位置。Yang提出在演算法中記錄最差位置而非最優位置,所有微粒都遠離這些最差位置。與此類似,Leontitsis在微粒群演算法中引入排斥子的概念,在使用個體最優位置和群體最優位置信息的同時,在演算法中記錄當前的個體最差位置和群體最差位置,並利用它們將微粒排斥到最優位置,從而讓微粒群更快地到達最優位置。孟建良提出一種改進的PSO演算法,在進化的初期,微粒以較大的概率向種群中其他微粒的個體最優學習;在進化後期,微粒以較大的概率向當前全局最優個體學習。Yang在PSO演算法中引入輪盤選擇技術來確定gBest,使得所有個體在進化早期都有機會引領搜索方向,從而避免早熟。
第三類方案是修改微粒更新公式。Hendtlass在速度更新方程中給每個微粒添加了記憶能力。He在速度更新方程中引入被動聚集機制。曾建潮通過對PSO演算法的速度進化迭代方程進行修正,提出一種保證全局收斂的隨機PSO演算法。Zeng在PSO演算法中引入加速度項,使得PSO演算法從一個二階隨機系統變為一個三階隨機系統,並使用PID控制器來控制演算法的演化。為了改進PSO演算法的全局搜索能力,Ho提出一種新的微粒速度和位置更新公式,並引入壽命(Age)變數。
第四類方案是修改速度更新策略。Liu認為過於頻繁的速度更新會弱化微粒的局部開采能力並減慢收斂,因此提出一種鬆弛速度更新(RVU)策略,僅當微粒使用原速度不能進一步提高適應值時才更新速度,並通過試驗證明該策略可以大大減小計算量並加速收斂。羅建宏對同步模式和非同步模式的PSO演算法進行了對比研究,試驗結果表明非同步模式收斂速度顯著提高,同時尋優效果更好。Yang在微粒的更新規則中引入感情心理模型。Liu採用一個最小速度閾值來控制微粒的速度,並使用一個模糊邏輯控制器來自適應地調節該最小速度閾值。張利彪提出了對PSO演算法增加更新概率,對一定比例的微粒並不按照原更新公式更新,而是再次隨機初始化。Dioan利用遺傳演算法(GA)來演化PSO演算法的結構,即微粒群中各微粒更新的順序和頻率。
第五類方案是修改速度限制方法、位置限制方法和動態確定搜索空間。Stacey提出一種重新隨機化速度的速度限制和一種重新隨機化位置的位置限制。Liu在[76]的基礎上,在PSO演算法中引入動量因子,來將微粒位置限制在可行范圍內。陳炳瑞提出一種根據微粒群的最佳適應值動態壓縮微粒群的搜索空間與微粒群飛行速度范圍的改進PSO演算法。
第六類方案是通過將PSO演算法與一些其他的搜索技術進行結合來提高PSO演算法的性能,主要目的有二,其一是提高種群多樣性,避免早熟;其二是提高演算法局部搜索能力。這些混合演算法包括將各種遺傳運算元如選擇、交叉、變異引入PSO演算法,來增加種群的多樣性並提高逃離局部最小的能力。Krink通過解決微粒間的沖突和聚集來增強種群多樣性,提出一種空間擴展PSO演算法(Spatial ExtensionPSO,SEPSO);但是SEPSO演算法的參數比較難以調節,為此Monson提出一種自適應調節參數的方法。用以提高種群多樣性的其他方法或模型還包括「吸引—排斥」、捕食—被捕食模型、耗散模型、自組織模型、生命周期模型(LifeCycle model)、貝葉斯優化模型、避免沖突機制、擁擠迴避(Crowd Avoidance)、層次化公平競爭(HFC)、外部記憶、梯度下降技術、線性搜索、單純形法運算元、爬山法、勞動分工、主成分分析技術、卡爾曼濾波、遺傳演算法、隨機搜索演算法、模擬退火、禁忌搜索、蟻群演算法(ACO)、人工免疫演算法、混沌演算法、微分演化、遺傳規劃等。還有人將PSO演算法在量子空間進行了擴展。Zhao將多主體系統(MAS)與PSO演算法集成起來,提出MAPSO演算法。Medasani借鑒概率C均值和概率論中的思想對PSO演算法進行擴展,提出一種概率PSO演算法,讓演算法分勘探和開發兩個階段運行。
第七類方案專門針對多模問題,希望能夠找到多個較優解。為了能使PSO演算法一次獲得待優化問題的多個較優解,Parsopoulos使用了偏轉(Deflection)、拉伸(Stretching)和排斥(Repulsion)等技術,通過防止微粒運動到之前已經發現的最小區域,來找到盡可能多的最小點。但是這種方法會在檢測到的局部最優點兩端產生一些新的局部最優點,可能會導致優化演算法陷入這些局部最小點。為此,Jin提出一種新的函數變換形式,可以避免該缺點。基於類似思想,熊勇提出一種旋轉曲面變換方法。
保持種群多樣性最簡單的方法,是在多樣性過小的時候,重置某些微粒或整個微粒群。Lvbjerg在PSO演算法中採用自組織臨界性作為一種度量,來描述微粒群中微粒相互之間的接近程度,來確定是否需要重新初始化微粒的位置。Clerc提出了一種「Re-Hope」方法,當搜索空間變得相當小但是仍未找到解時(No-Hope),重置微粒群。Fu提出一種帶C-Pg變異的PSO演算法,微粒按照一定概率飛向擾動點而非Pg。赫然提出了一種自適應逃逸微粒群演算法,限制微粒在搜索空間內的飛行速度並給出速度的自適應策略。
另一種變種是小生境PSO演算法,同時使用多個子種群來定位和跟蹤多個最優解。Brits還研究了一種通過調整適應值計算方式的方法來同時找到多個最優解。Li在PSO演算法中引入適應值共享技術來求解多模問題。Zhang在PSO演算法中採用順序生境(SequentialNiching)技術。在小生境PSO演算法的基礎上,還可以使用向量點積運算來確定各個小生境中的候選解及其邊界,並使該過程並行化,以獲得更好的結果。但是,各種小生境PSO演算法存在一個共同的問題,即需要確定一個小生境半徑,且演算法性能對該參數很敏感。為解決該問題,Bird提出一種自適應確定niching參數的方法。
Hendtlass在PSO演算法中引入短程力的概念,並基於此提出一種WoSP演算法,可以同時確定多個最優點。劉宇提出一種多模態PSO演算法,用聚類演算法對微粒進行聚類,動態地將種群劃分成幾個類,並且使用微粒所屬類的最優微粒而非整個種群的最好微粒來更新微粒的速度,從而可以同時得到多個近似最優解。Li在PSO演算法中引入物種的概念,但是由於其使用的物種間距是固定的,該方法只適用於均勻分布的多模問題;為此,Yuan對該演算法進行擴展,採用多尺度搜索方法對物種間距加以自適應的調整。
此外,也有研究者將PSO演算法的思想引入其他演算法中,如將PSO演算法中微粒的運動規則嵌入到進化規劃中,用PSO演算法中的運動規則來替代演化演算法中交叉運算元的功能。
『貳』 遊人容量的計算方法有哪些類型
1,環境日容量面積,密度或完全游道測演算法:目前國內的旅遊容量計算大部分是都是這種方法進行計算的。
2,分區域計算景區容量的測算方法:本測演算法在實際應用中,由於不同區域的實測資料和遊人分布數據很難獲得,缺乏通用性。
3,按照密度,流速和周轉時間測算日容量:這種方法主要應用於線性景區,採用人均佔有的合理道路長度和流動速度計算全天容納的合理遊客數量。
4,以限制性因子為指標計算容量:本測演算法更能表達景區實際的容量狀況和旅遊者在景區內的流通狀況。實際上密度測演算法就是將空間作為限制容量的主要瓶頸進行測算的。
5,公園遊人容量應按下式計算:C=A/Am
式中:C——公園遊人容量(人);A——公園總面積(㎡);Am——公園遊人人均佔有面積(㎡/人)
(2)密度峰演算法擴展閱讀:
「遊人容量」簡介:
1,遊人容量是指游覽旺季高峰期時同時在公園內的遊人數。公園遊人容量是確定內部各種設施數量或規模的依據,通過遊人數量的控制,避免公園因超容量接納遊人,造成人身傷亡和園林設施損壞等事故,並為城市部門驗證綠地系統規劃的合理程度提供依據。
2,公園的遊人量隨季節、假日與平日、一日之中的高峰與低谷而變化;一般節日最多,游覽旺季、星期日次之,旺季平日相對較少,淡季平日最少,一日之中又有峰谷之分。確定公園遊人容量以游覽旺季的星期日高峰時為標准,這是公園發揮作用的主要時間。
『叄』 籌碼峰炒股口訣
籌碼峰炒股口訣如下:
一、上峰不移,下跌不止。在股價下跌的過程中,如果高位密集峰沒有向下移動,說明高位套牢盤仍然存在,後市會受到套牢盤的地壓,股價很難向上發展。
二、下峰鎖定,行情未止。在股價上漲過程中,如果低位密集峰沒有出現松動,說明市場持籌穩定,場內拋壓不大。這種情況多出現在有主力資金參與的個股中,說明主力資金並沒有派發籌碼的現象,因此行情還沒有終結,股價還會繼續上漲。
(3)密度峰演算法擴展閱讀:
一、股票籌碼峰形態講解:
1、放量突破低位單峰密集
股價長期整理後,移動成本低水平分布,形成單峰。股價成交量突破單峰密度,通常是市場上漲的標志。股價放量突破單峰密度,這時投資者可以積極介入。移動成本分布形成低峰值密度是一輪上漲行情的充分條件。單峰強度越大,籌碼轉手越充分,上攻的力度越大。
2、上峰消失了,低位形成了一個新的單峰,穩定在底部
在下跌行情中,如果上方密峰沒有被完全消耗,在下方形成新的單個密峰,就不會有新一輪行情。上漲的充分條件是股價上方沒有大量的鎖倉,多峰下跌中的每一個上峰都是強阻力位,對於多峰下跌的股票不宜倉促開倉。上峰消失,在低水平形成新的單一峰值密度意味著停止下降和穩定。一旦股價開始向上突破,就可以積極跟進。
3、在上升中有許多高峰
股價被一個較低的單峰集中後,啟動上升行情,並在上升途中做震盪排列,形成一個或多個密集峰。新密集峰形成時,原密集峰減少,但仍存在。震盪整理過程中的拉升屬於洗盤的天性每一個密集的高峰都會成為該股回調洗盤的有力支撐當股價上漲時,就會是震盪-sorted,形成一個或多個密集的高峰。上漲行情還會繼續,可以逢低吸納,也可以繼續持股。比如新的密峰增加的同時,原來的密峰迅速減少,建議出去觀望。
4、向上突破高峰密度
經過一輪上漲,個股在高位形成高峰密度,股價再次突破高峰密度,創出近期歷史新高。股價再次突破高位和單峰集中,是新一輪上漲的開始。投資者可以結合其他信號適當介入,快進快出。股價回落突破高密集峰值時止損。
5、超跌V型反轉至峰值密度
股價迅速跌破原來的單峰值密度,跌至超跌區,原來的單峰值密度依然完好存在。確認超賣V型反轉後立即跟進,觀望股價何時反彈回原來的單峰值密集區。
6、洗盤回歸單峰集中
經過長時間盤整形成了較低的單峰集中度,隨後股價跌破了單峰集中度。沒有跡象表明,在回調期間,原來的密集峰值將會減少,成交將會收縮。洗盤回調不太大,通常不到20%。洗盤回調後反彈至原單密集峰值,隨後在成交量上突破原單密集峰值。這是介入的好時機。
7、回調峰值密度得到強力支撐
股價放量持續上漲並突破低位單峰密度,隨後很快安排回調,在低位單峰密集峰值得到支撐,隨後放量從支撐再次上漲。再一次,股價上漲意味著主升浪開始,這是一個很好的介入機會。
8、跌破單高峰密度
股價自下跌以來已經有了較大的漲幅。原始的低階單峰被集中消除,高階單峰被集中形成。在這里干預是不合適的,投資者應及時止損出局。
9、洗盤後再次集中
第一次低位密集峰後開始小幅上攻行情,在頂部時第一次低位籌碼密集後仍大量存在。第二次峰密集與第一次峰密集重合成單峰密集。股價放量突破第二次峰密集,投資者可積極跟進。
『肆』 太陽光方位的測量和自動計算方法
[編輯本段]基本參數
天文符號:⊙太陽
直徑:1 392 000公里(地球直徑的109倍)
體積:1.412× 10^27 立方米(地球的130萬倍)
質量:1.989×10^30 千克(地球的332 946倍)
溫度:約6000K(表面) ,1560萬K (核心),5百萬K(日冕)
平均密度:1.409克/立方厘米
宇宙年:225百萬年
自轉會合周期: 赤道=26.9天 ,極區=31.1天
太陽年齡:約 4.57×10^9 年
太陽活動周期: 11.04 年
總輻射功率:3.86×10^26 瓦特(焦耳/秒)
太陽常數 f = 1.97 卡·厘米^2·分^-1
光譜型: G2V
目視星等 = -26.74 等
絕對目視星等 = 4.83 等
熱星等 =-26.82 等
絕對熱星等 = 4.75 等
太陽表面重力加速度 = 2.74×10^2米/秒^2 (為地球表面重力加速度的27.9倍)
太陽表面脫離速度 = 618 公里/秒
地球附近太陽風的速度: 450公里/秒
太陽運動速度 (方向α=18h07m,δ=+30°) = 19.7 公里/秒
日地距離
日地平均距離 (1天文單位) = 1.49597870×10^11 米(1億5千萬公里)
日地最遠距離 = 1.5210×10^11 米
日地最近距離 = 1.4710×10^11 米
[編輯本段]運行軌道
太陽位於銀道面之北的獵戶座旋臂上,距離銀河系中心約26000光年,在銀道面以北約26光年, 它一方面繞著銀心以每秒250公里的速度旋轉(周期大概是2.5億年),另一方面又相對於周圍恆星以每秒19.7公里的速度朝著織女星附近方向運動。太陽也在自轉,其周期在日面赤道帶約25天;兩極區約為35天。
[編輯本段]結構
太陽結構圖太陽只是一顆非常普通的恆星,在廣袤浩瀚的繁星世界裡,太陽的亮度、大小和物質密度都處於中等水平。只是因為它離地球較近,所以看上去是天空中最大最亮的天體。其它恆星離我們都非常遙遠,即使是最近的恆星,也比太陽遠27萬倍,看上去只是一個閃爍的光點。
組成太陽的物質大多是些普通的氣體,其中氫約佔71.3%、 氦約佔27%, 其它元素佔2%。太陽從中心向外可分為核反應區、輻射區和對流區、太陽大氣。太陽的大氣層,像地球的大氣層一樣,可按不同的高度和不同的性質分成各個圈層,即從內向外分為光球、色球和日冕三層。我們平常看到的太陽表面,是太陽大氣的最底層,溫度約是6000℃。它是不透明的,因此我們不能直接看見太陽內部的結構。但是,天文學家根據物理理論和對太陽表面各種現象的研究,建立了太陽內部結構和物理狀態的模型。這一模型也已經被對於其他恆星的研究所證實,至少在大的方面是可信的。
[編輯本段]構造
內部構造
太陽的內部主要可以分為三層:核心區、輻射區和對流區。
太陽的核心區域半徑是太陽半徑的1/4,約為整個太陽質量的一半以上。太陽核心的溫度極高,達1500萬℃,壓力也極大,使得由氫聚變為氦的熱核反應得以發生,從而釋放出極大的能量。這些能量再通過輻射層和對流層中物質的傳遞,才得以傳送到達太陽光球的底部,並通過光球向外輻射出去。太陽中心區的物質密度非常高。每立方厘米可達160克。太陽在自身強大重力吸引下,太陽中心區處於高密度、高溫和高壓狀態。是太陽巨大能量的發祥地。 太陽中心區產生的能量的傳遞主要靠輻射形式。太陽中心區之外就是輻射層,輻射層的范圍是從熱核中心區頂部的0.25個太陽半徑向外到0.86個太陽半徑,這里的溫度、密度和壓力都是從內向外遞減。從體積來說,輻射層占整個太陽體積的絕大部分。 太陽內部能量向外傳播除輻射,還有對流過程。即從太陽0.86個太陽半徑向外到達太陽大氣層的底部,這一區間叫對流層。這一層氣體性質變化很大,很不穩定,形成明顯的上下對流運動。這是太陽內部結構的最外層。
光球
太陽光球就是我們平常所看到的太陽圓面,通常所說的太陽半徑也是指光球的半徑。光球層位於對流層之外,屬太陽大氣層中的最低層或最里層。光球的表面是氣態的,其平均密度只有水的幾億分之一,但由於它的厚度達500千米,所以光球是不透明的。光球層的大氣中存在著激烈的活動,用望遠鏡可以看到光球表面有許多密密麻麻的斑點狀結構,很象一顆顆米粒,稱之為米粒組織。它們極不穩定,一般持續時間僅為5~10分鍾,其溫度要比光球的平均溫度高出300~400℃。目前認為這種米粒組織是光球下面氣體的劇烈對流造成的現象。
光球表面另一種著名的活動現象便是太陽黑子。黑子是光球層上的巨大氣流旋渦,大多呈現近橢圓形,在明亮的光球背景反襯下顯得比較暗黑,但實際上它們的溫度高達4000℃左右,倘若能把黑子單獨取出,一個大黑子便可以發出相當於滿月的光芒。日面上黑子出現的情況不斷變化,這種變化反映了太陽輻射能量的變化。太陽黑子的變化存在復雜的周期現象,平均活動周期為11.2年。
色球
緊貼光球以上的一層大氣稱為色球層,平時不易被觀測到,過去這一區域只是在日全食時才能被看到。當月亮遮掩了光球明亮光輝的一瞬間,人們能發現日輪邊緣上有一層玫瑰紅的絢麗光彩,那就是色球。色球層厚約8000千米,它的化學組成與光球基本上相同,但色球層內的物質密度和壓力要比光球低得多。日常生活中,離熱源越遠處溫度越低,而太陽大氣的情況卻截然相反,光球頂部接近色球處的溫度差不多是4300℃,到了色球頂部溫度竟高達幾萬度,再往上,到了日冕區溫度陡然升至上百萬度。人們對這種反常增溫現象感到疑惑不解,至今也沒有找到確切的原因。
在色球上人們還能夠看到許多騰起的火焰,這就是天文上所謂的「日珥」。日珥是迅速變化著的活動現象,一次完整的日珥過程一般為幾十分鍾。同時,日珥的形狀也可說是千姿百態,有的如浮雲煙霧,有的似飛瀑噴泉,有的好似一彎拱橋,也有的酷似團團草叢,真是不勝枚舉。天文學家根據形態變化規模的大小和變化速度的快慢將日珥分成寧靜日珥、活動日珥和爆發日珥三大類。最為壯觀的要屬爆發日珥,本來寧靜或活動的日珥,有時會突然"怒火沖天",把氣體物質拚命往上拋射,然後回轉著返回太陽表面,形成一個環狀,所以又稱環狀日珥。
日冕
日冕 日冕是太陽大氣的最外層。日冕中的物質也是等離子體,它的密度比色球層更低,而它的溫度反比色球層高,可達上百萬攝氏度。在日全食時在日面周圍看到放射狀的非常明亮的銀白色光芒即是日冕。 日冕的范圍在色球之上,一直延伸到好幾個太陽半徑的地方。日冕還會有向外膨脹運動,並使得熱電離氣體粒子連續地從太陽向外流出而形成太陽風。
[編輯本段]太陽活動
太陽看起來很平靜,實際上無時無刻不在發生劇烈的活動。太陽由里向外分別為太陽核反應區、太陽對流層、太陽大氣層。其中心區不停地進行熱核反應,所產生的能量以輻射方式向宇宙空間發射。其中二十二億分之一的能量輻射到地球,成為地球上光和熱的主要來源。太陽表面和大氣層中的活動現象,諸如太陽黑子、耀斑和日冕物質噴發(日珥)等,會使太陽風大大增強,造成許多地球物理現象——例如極光增多、大氣電離層和地磁的變化。太陽活動和太陽風的增強還會嚴重干擾地球上無線電通訊及航天設備的正常工作,使衛星上的精密電子儀器遭受損害,地面通訊網路、電力控制網路發生混亂,甚至可能對太空梭和空間站中宇航員的生命構成威脅。因此,監測太陽活動和太陽風的強度,適時作出"空間氣象"預報,越來越顯得重要。
太陽黑子
太陽黑子 4000年前古時候祖先肉眼都看到了像3條腿的烏鴉的黑子通過一般的光學望遠鏡觀測太陽,觀測到的是光球層的活動。在光球上常常可以看到很多黑色斑點,它們叫做「太陽黑子」。太陽黑子在日面上的大小、多少、位置和形態等,每天都不同。太陽黑子是光球層物質劇烈運動而形成的局部強磁場區域,也是光球層活動的重要標志。長期觀測太陽黑子就會發現,有的年份黑子多,有的年份黑子少,有時甚至幾天,幾十天日面上都沒有黑子。天文學家們早就注意到,太陽黑子從最多或最少的年份到下一次最多或最少的年份,大約相隔11年。也就是說,太陽黑子有平均11的活動周期,這也是整個太陽的活動周期。天文學家把太陽黑子最多的年份稱之為「太陽活動高峰年」,把太陽黑子最少的年份稱之為「太陽活動低峰年」。
太陽耀斑
太陽耀斑是一種最劇烈的太陽活動。一般認為發生在色球層中,所以也叫「色球爆發」。其主要觀測特徵是,日面上(常在黑子群上空)突然出現迅速發展的亮斑閃耀,其壽命僅在幾分鍾到幾十分鍾之間,亮度上升迅速,下降較慢。特別是在太陽活動峰年,耀斑出現頻繁且強度變強。
爆發時的太陽耀斑別看它只是一個亮點,一旦出現,簡直是一次驚天動地的大爆發。這一增亮釋放的能量相當於10萬至100萬次強火山爆發的總能量,或相當於上百億枚百噸級氫彈的爆炸;而一次較大的耀斑爆發,在一二十分鍾內可釋放10的25次冪焦耳的巨大能量。
除了日面局部突然增亮的現象外,耀斑更主要表現在從射電波段直到X射線的輻射通量的突然增強;耀斑所發射的輻射種類繁多,除可見光外,有紫外線、X射線和伽瑪射線,有紅外線和射電輻射,還有沖擊波和高能粒子流,甚至有能量特高的宇宙射線。
耀斑對地球空間環境造成很大影響。太陽色球層中一聲爆炸,地球大氣層即刻出現繚繞餘音。耀斑爆發時,發出大量的高能粒子到達地球軌道附近時,將會嚴重危及宇宙飛行器內的宇航員和儀器的安全。當耀斑輻射來到地球附近時,與大氣分子發生劇烈碰撞,破壞電離層,使它失去反射無線電電波的功能。無線電通信尤其是短波通信,以及電視台、電台廣播,會受到干擾甚至中斷。耀斑發射的高能帶電粒子流與地球高層大氣作用,產生極光,並干擾地球磁場而引起磁暴。
此外,耀斑對氣象和水文等方面也有著不同程度的直接或間接影響。正因為如此,人們對耀斑爆發的探測和預報的關切程度與日俱增,正在努力揭開耀斑的奧秘。
光斑(譜斑)
太陽光球層上比周圍更明亮的斑狀組織。用天文望遠鏡對它觀測時,常常可以發現:在光球層的表面有的明亮有的深暗。這種明暗斑點是由於這里的溫度高低不同而形成的,比較深暗的斑點叫做「太陽黑子」,比較明亮的斑點叫做「光斑」。光斑常在太陽表面的邊緣「表演」,卻很少在太陽表面的中心區露面。因為太陽表面中心區的輻射屬於光球層的較深氣層,而邊緣的光主要來源光球層較高部位,所以,光斑比太陽表面高些,可以算得上是光球層上的「高原」。
光斑也是太陽上一種強烈風暴,天文學家把它戲稱為「高原風暴」。不過,與烏雲翻滾,大雨滂沱,狂風卷地百草折的地面風暴相比,「高原風暴」的性格要溫和得多。光斑的亮度只比寧靜光球層略強一些,一般只大10%;溫度比寧靜光球層高300℃。許多光斑與太陽黑子還結下不解之緣,常常環繞在太陽黑子周圍「表演」。少部分光斑與太陽黑子無關,活躍在70°高緯區域,面積比較小,光斑平均壽命約為15天,較大的光斑壽命可達三個月。
光斑不僅出現在光球層上,色球層上也有它活動的場所。當它在色球層上「表演」時,活動的位置與在光球層上露面時大致吻合。不過,出現在色球層上的不叫「光斑」,而叫「譜斑」。實際上,光斑與譜斑是同一個整體,只是因為它們的「住所」高度不同而已,這就好比是一幢樓房,光斑住在樓下,譜斑住在樓上。
米粒組織
米粒組織是太陽光球層上的一種日面結構。呈多角形小顆粒形狀,得用天文望遠鏡才能觀測到。米粒組織的溫度比米粒間區域的溫度約高300℃,因此,顯得比較明亮易見。雖說它們是小顆粒,實際的直徑也有1000公里~2000公里。
明亮的米粒組織很可能是從對流層上升到光球的熱氣團,不隨時間變化且均勻分布,且呈現激烈的起伏運動。米粒組織上升到一定的高度時,很快就會變冷,並馬上沿著上升熱氣流之間的空隙處下降;壽命也非常短暫,來去匆匆,從產生到消失,幾乎比地球大氣層中的雲消煙散還要快,平均壽命只有幾分鍾,此外,近年來發現的超米粒組織,其尺度達3萬公里左右,壽命約為20小時。
有趣的是,在老的米粒組織消逝的同時,新的米粒組織又在原來位置上很快地出現,這種連續現象就像我們日常所見到的沸騰米粥上不斷地上下翻騰的熱氣泡。
[編輯本段]生命周期
恆星也有自己的生命史,它們從誕生、成長到衰老,最終走向死亡。它們大小不同,色彩各異,演化的歷程也不盡相同。恆星與生命的聯系不僅表現在它提供了光和熱。實際上構成行星和生命物質的重原子就是在某些恆星生命結束時發生的爆發過程中創造出來的。
目前太陽所處的主序星階段,通過對恆星演化及宇宙年代學模型的計算機模擬,已經歷了大約45.7億年。據研究,45.9億年前一團氫分子雲的迅速坍縮形成了一顆第三代第一星族的金牛T星,即太陽。這顆新生的恆星沿著距銀河系中心約27,000光年的近乎圓形軌道運行。
太陽在其主序星階段已經到了中年期,在這個階段它核心內部發生的恆星核合成反應將氫聚變為氦。在太陽的核心,每秒能將超過400萬噸物質轉化為能量,生成中微子和太陽幅射。以這個速度,太陽至今已經將大約100個地球質量的物質轉化成了能量。太陽作為主序星的時間大約持續100億年。
太陽的質量不足以爆發為超新星。在50~60億年後,太陽內的氫消耗殆盡,核心中主要是氦原子,太陽將轉變成紅巨星,當其核心的氫耗盡導致核心收縮及溫度升高時,太陽外層將會膨脹。當其核心溫度升高到 100,000,000 K時,將發生氦的聚變而產生碳,從而進入漸近巨星分支,而當太陽內的氦元素也全部轉化為炭後,太陽將不再發光,成為一顆死星(Black dwarf)。
地球的最終命運還不清楚。太陽變成紅巨星時,其半徑可超過1天文單位,超出地球目前的軌道,是當前太陽半徑的260倍。然而,屆時作為漸近巨星分支恆星,太陽將會由於恆星風而失去當前質量的約30%,因而行星軌道將會外推。僅就此而言,地球也許會倖免被太陽吞噬。然而,新的研究認為地球還是會因為潮汐作用的影響而被太陽吞掉。即使地球能逃脫被太陽熔融的命運,地球上的水將被蒸發而大氣層也會散逸。實際上,即使太陽還是主序星時,它也會逐步變得更亮,表面溫度緩慢上升。太陽溫度的上升將在9億年後導致地球表面溫度升高,造成目前我們所知的生命無法生存。其後再過10億年,地球表面的水將完全消失。
紅巨星階段之後,由熱產生的強烈脈動會拋掉太陽的外殼,形成行星狀星雲。失去外殼後剩下的只有極為熾熱的恆星核,它將會成為白矮星,在漫長的時間中慢慢冷卻和暗淡下去。這就是中低質量恆星的典型演化過程[4]。
[編輯本段]太陽能量
作為一顆恆星太陽,其總體外觀性質是,光度為383億億億瓦,絕對星等為4.8。是一顆黃色G2型矮星,有效溫度等於開氏5800度。太陽與在軌道上繞它公轉的地球的平均距離為149597870km(499.005光秒或1天文單位)。按質量計,它的物質構成是71%的氫、26%的氦和少量重元素。太陽圓面在天空的角直徑為32角分,與從地球所見的月球的角直徑很接近,是一個奇妙的巧合(太陽直徑約為月球的400倍而離我們的距離恰是地月距離的400倍),使日食看起來特別壯觀。由於太陽比其他恆星離我們近得多,其視星等達到-26.8,成為地球上看到最明亮的天體。太陽每25.4天自轉一周(平均周期;赤道比高緯度自轉得快),每2億年繞銀河系中心公轉一周。太陽因自轉而呈輕微扁平狀,與完美球形相差0.001%,相當於赤道半徑與極半徑相差6km(地球這一差值為21km,月球為9km,木星9000km,土星5500km)。差異雖然很小,但測量這一扁平性卻很重要,因為任何稍大一點的扁平程度(哪怕是0.005%)將改變太陽引力對水星軌道的影響,而使根據水星近日點進動對廣義相對論所做的檢驗成為不可信。
太陽風
太陽風是一種連續存在,來自太陽並以200-800km/s的速度運動的等離子體流。這種物質雖然與地球上的空氣不同,不是由氣體的分子組成,而是由更簡單的比原子還小一個層次的基本粒子——質子和電子等組成,但它們流動時所產生的效應與空氣流動十分相似,所以稱它為太陽風。當然,太陽風的密度與地球上的風的密度相比,是非常非常稀薄而微不足道的,一般情況下,在地球附近的行星際空間中,每立方厘米有幾個到幾十個粒子。而地球上風的密度則為每立方厘米有2687億億個分子。太陽風雖然十分稀薄,但它颳起來的猛烈勁,卻遠遠勝過地球上的風。在地球上,12級台風的風速是每秒32.5米以上,而太陽風的風速,在地球附近卻經常保持在每秒350~ 450千米,是地球風速的上萬倍,最猛烈時可達每秒800千米以上。太陽風從太陽大氣最外層的日冕,向空間持續拋射出來的物質粒子流。這種粒子流是從冕洞中噴射出來的,其主要成分是氫粒子和氦粒子。太陽風有兩種:一種持續不斷地輻射出來,速度較小,粒子含量也較少,被稱為「持續太陽風」;另一種是在太陽活動時輻射出來,速度較大,粒子含量也較多,這種太陽風被稱為「擾動太陽風」。擾動太陽風對地球的影響很大,當它抵達地球時,往往引起很大的磁暴與強烈的極光,同時也產生電離層騷擾。太陽風的存在,給我們研究太陽以及太陽與地球的關系提供了方便。
太陽光
地球上除原子能和火山、地震、潮汐以外,太陽能是一切能量的總源泉。
到達地球大氣上界的太陽輻射能量稱為天文太陽輻射量。在地球位於日地平均距離處時,地球大氣上界垂直於太陽光線的單位面積在單位時間內所受到的太陽輻射的全譜總能量,稱為太陽常數。太陽常數的常用單位為瓦/米2。因觀測方法和技術不同,得到的太陽常數值不同。世界氣象組織 (WMO)1981年公布的太陽常數值是1368瓦/米2。如果將太陽常數乘上以日地平均距離作半徑的球面面積,這就得到太陽在每分鍾發出的總能量,這個能量約為每分鍾2.273×10^28焦。(太陽每秒輻射到太空的熱量相當於一億億噸煤炭完全燃燒產生熱量的總和,相當於一個具有5200萬億億馬力的發動機的功率。太陽表面每平方米面積就相當於一個85000馬力的動力站。)而地球上僅接收到這些能量的22億分之一。太陽每年送給地球的能量相當於100億億度電的能量。太陽能取之不盡,用之不竭,又無污染,是最理想的能源。地球大氣上界的太陽輻射光譜的99%以上在波長 0.15~4.0微米之間。大約50%的太陽輻射能量在可見光譜區(波長0.4~0.76微米),7%在紫外光譜區(波長<0.4微米),43%在紅外光譜區(波長>0.76微米),最大能量在波長 0.475微米處。由於太陽輻射波長較地面和大氣輻射波長(約3~120微米)小得多,所以通常又稱太陽輻射為短波輻射,稱地面和大氣輻射為長波輻射。太陽活動和日地距離的變化等會引起地球大氣上界太陽輻射能量的變化。
太陽每時每刻都在向地球傳送著光和熱,有了太陽光,地球上的植物才能進行光合作用。植物的葉子大多數是綠色的,因為它們含有葉綠素。葉綠素只有利用太陽光的能量,才能合成種種物質,這個過程就叫光合作用。據計算,整個世界的綠色植物每天可以產生約4億噸的蛋白質、碳水化合物和脂肪,與此同時,還能向空氣中釋放出近5億噸的氧,為人和動物提供了充足的食物和氧氣。
[編輯本段]文學意象
對於人類來說,太陽無疑是宇宙中最重要的天體。萬物生長靠太陽,沒有太陽,地球上就不可能有姿態萬千的生命現象,當然也不會孕育出作為智能生物的人類。太陽給人們以光明和溫暖,它帶來了日夜和季節的輪回,左右著地球冷暖的變化,為地球生命提供了各種形式的能源。
在人類歷史上,太陽一直是許多人頂禮膜拜的對象。中華民族的先民把自己的祖先炎帝尊為太陽神。而在古希臘神話中,太陽神則是宙斯(萬神之王)的兒子。
希臘太陽神話
太陽神阿波羅是天神宙斯和女神勒托(Leto)所生之子。神後赫拉(Hera)由於妒忌宙斯和勒托的相愛,殘酷地迫害勒托,致使她四處流浪。後來總算有一個浮島德羅斯收留了勒托,她在島上艱難地生下了日神和月神。於是赫拉就派巨蟒皮托前去殺害勒托母子,但沒有成功。後來,勒托母子交了好運,赫拉不再與他們為敵,他們又回到眾神行列之中。阿波羅為替母報仇,就用他那百發百中的神箭射死了給人類帶來無限災難的巨蟒皮托,為民除了害。阿波羅在殺死巨蟒後十分得意,在遇見小愛神厄洛斯(Eros)時譏諷他的小箭沒有威力,於是厄洛斯就用一枝燃著戀愛火焰的箭射中了阿波羅,而用一枝能驅散愛情火花的箭射中了仙女達佛涅(Daphne),要令他們痛苦。達佛涅為了擺脫阿波羅的追求,就讓父親把自己變成了月桂樹,不料阿波羅仍對她痴情不已,這令達佛涅十分感動。而從那以後,阿波羅就把月桂作為飾物,桂冠成了勝利與榮譽的象徵。每天黎明,太陽神阿波羅都會登上太陽金車,拉著韁繩,高舉神鞭,巡視大地,給人類送來光明和溫暖。所以,人們把太陽看作是光明和生命的象徵。
北歐太陽神話
豐僥、興旺、愛情、和平之神,美麗的仙國阿爾弗海姆的國王。一說他與巴爾德爾同為光明之神,或稱太陽神。他屬下的小精靈在全世界施言行善。他常騎一隻長著金黃色鬃毛的野豬出外巡視。人人都享受著他恩賜的和平與幸福。他有一把寶劍,光芒四射,能騰雲駕霧。他還有一隻袖珍魔船,必要時可運載所有的神和他們的武器。
中國太陽神話
在中國古典詩歌作品中,太陽意象不僅出現的次數多,而且涉及的內容也十分豐富。它的起源可追溯到原始的太陽崇拜,後來逐漸衍生出皇權、家庭溫暖、時間短促、離情別恨等多種含義。
後羿射日
相傳上古時期,夏代有窮國的國王是一個名叫後羿的英俊男子。那後羿不僅長得瀟灑,而且文武雙全,天文、地理無所不知,謀略、武藝無所不精,尤其還射得一手好箭。有窮國在後羿的英明治理下,蒸蒸日上,威震四方。人們豐衣足食,安居樂業,日出而作,日落而息,呈現一派豐盛祥和的景象。
後羿每天處理完國事後,就帶上心愛的弓箭(聽說此箭乃神靈所賜),到射箭場進行練習,日復一日,年復一年,從未間斷。他的箭術已到出神入化、無人能比的地步。
日子在和平、美滿中一天天過去,有窮國日趨繁榮。就在人們沉浸在幸福、滿足之中時,突然,禍從天降。
那是仲夏的一天,那天早晨和往日並無不同,可到了日出時候,東方一下子升出來十個太陽。人們看著眼前的一切,目瞪口呆。大家清楚,天上掛著十個太陽意味著什麼。立時,哭喊著、祈禱聲一片。人們用盡各種辦法祈求上天開恩,收回多出的九顆太陽,但一切無濟於事。一天又一天,田裡的莊稼漸漸枯萎,河裡的水慢慢乾涸,老弱病殘者一個接一個地倒下……
後羿看著眼前的一切,心如刀絞,可是無計可施。他愁腸欲斷,焦慮萬分,日漸憔悴。一天,睏倦不已的他剛搭上眼,忽夢見一白鬍老人,老人指點他,將九個箭靶做成太陽形狀,每天對准靶心,練上七七四十九天後,便可射落天上的太陽,並囑咐他,此事不可外揚,只有到了第五十天才可讓人知道。後羿睜開眼,驚喜不已,立刻動手做箭靶,箭靶做好後,便帶上箭躲到深山裡,沒日沒夜地練起來。到了第五十天,國王要射日的消息傳出後,在死亡線上掙扎的人們精神頓時振奮起來,彷彿看到了生的希望。人們唯恐後羿的箭射不落太陽,男女老幼頂著火一般的烈日,用最短的時間,搭起一座數米高的樓台,並抬來戰鼓,為後羿吶喊助威。後羿在震耳欲聾的鼓聲里,一步步登上樓台,在他身後,是無數雙渴求、期盼的眼睛,在他周圍,是痛苦呻吟的土地,在他頭頂,是熾熱、張狂的太陽。他告訴自己只能成功,不許失敗。盡管知道走的是一條不歸路,但為了救出受苦受難的民眾,他無怨無悔。
終於到達樓頂了,後羿回首最後一次看了看他的臣民,他的王宮,然後抬起頭,舉起手中的箭,緩緩拉開弓。「嗖」,只聽一聲巨響,被擊中的太陽應聲墜下,隨即不知去向。台下一片歡呼,吶喊聲、戰鼓聲穿透雲霄。後羿一鼓作氣,連連拉弓,又射落了七顆。還剩最後兩顆了,此時,他已精疲力盡,可他知道,天上只能留下一顆太陽,如果此時放棄,就意味著前功盡棄。他再一次舉起箭,用盡全身力氣,將第九顆太陽擊落後,便一頭栽倒在地,再也沒起來。一切恢復了原樣,而勇敢、可敬的後羿卻永遠閉上了眼睛……
被射中的九顆太陽,墜落到九個不同的地方。其中的一顆,掉到了黃海邊上,並砸出了一個湖,這個湖後人稱作射陽湖。不久,從射陽湖裡流出一條河,人們把它稱作射陽河。
《山海經》中關於太陽的神話傳說
在遙遠的東南海外,有一個羲和國,國中有一個異常美麗的女子叫羲和,她每天都在甘淵中洗太陽。太陽在經過夜晚之後就會被污染,經過羲和的洗滌,那被污染了的太陽,在第二天升起的時候仍會皎潔如初。這個羲和,實際上是傳說中的上古帝王帝俊的妻子,她生了十個太陽,並且讓這十個太陽輪流在空中執勤,把光明與溫暖送到人間。這十個太陽的出發地十分荒涼偏僻,那地方有座山,山上有棵扶桑樹,樹高三百里,但它的葉子卻像芥子一般大小。樹下有個深谷叫湯谷,這是太陽洗浴的地方。它們洗浴完了,就藏在樹枝上擦摩身子。每天由最上邊的那一個騎著鳥兒巡遊天空,其他的便依次上登,准備出發……
『伍』 籌碼底部單峰密集為什麼不漲
單峰密度是移動成本分布形成的一個獨立的密集峰值,表明股票的流通籌碼充分集中在特定的價格區域,如果不漲可能是當莊家是賣方股民是買方時,形成的單峰值密集意味著下跌行情的開始。
一、籌碼集中度的評判原則
1、SCR線在下線,下方,這意味著籌碼分散,主力資金被拿走或者沒有主力資金留下。對於這類股票,我們不應該平倉,除非股指極低,股票價值很好,所以我們應該進行長期價值投資。2、SCR線在下線——的中線,說明籌碼集中比較分散,也說明主力跡象不明顯,主要是散戶在投機。這個時候股價一般不會大幅上漲,因為籌碼分散,所以提高股價的成本高,力度也高。3、SCR以其向上的力從中線穿過該線,這是主力建倉的標志,應密切關注。向上的力越大,主力建倉的跡象越明顯。在這個過程中,股價可能會下跌,這就是SCR線與股價的偏差,而這種偏差是主力開倉的重要標准。在這個過程中,散戶應該密切關注它,但不必跟進。當主力持倉完成,股價開始上漲時,就需要強力開倉。主要位置是散戶坐轎,所以散戶不要太客氣。4、位線放在SCR線上後,一般SCR線有一個平滑的過程,這是主力拉高股價的過程,散戶此時應該持股。
運用低位單峰密集選底部大牛股,成功率百分百
二、籌碼的定義
流通股票持有成本的分配。根據中國股票市場的特點,我們重新定義了籌碼是二級市場實際流通股票的成本分布和數量分布的技術指標統計。籌碼分布的意義在於能夠立體的看到籌碼的分布,是集中還是分散,股價的位置,是密集區還是分散區域。每一種形式都有不同的含義,可以說具有非常強的借鑒作用。
總而言之,單峰密集往往是由於股價長期在某個價格附近波動,前期卡在上面的籌碼基本都是這個價格割肉,而前期盈利的籌碼基本都是這個價格賣出。使所有當前持有者的成本集中在價格附近。在圖上形成一個單一的峰形。是籌碼轉換的結果。
『陸』 氣壓是水壓的三倍,這個有沒有明文的演算法或者資料。老師
大氣對浸在它裡面的物體產生的壓強叫大氣壓強,簡稱大氣壓或氣壓。 1654年格里克在德國馬德堡作了著名的馬德堡半球實驗,有力地證明了大氣壓強的存在,這讓人們對大氣壓有了深刻的認識。然而早在1643年,義大利科學家托里拆利就在一根1米長的細玻璃管中注滿水銀(汞)倒置在盛有水銀的水槽中,發現玻璃管中的水銀大約下降到760毫米高度後就不再下降了。這760毫米刻度之上的空間無空氣進入,是真空。托里拆利據此推斷大氣的壓強就等於水銀柱產生的壓強,這就是著名的托里拆利實驗。標准大氣壓為:1.013×10^5Pa(帕斯卡),等於760mmhg(毫米汞(水銀)柱)
大氣會從各個方向對處於其中的的物體產生壓強,大氣壓強簡稱為大氣壓。測量大氣壓的儀叫做氣壓計,常見的有水銀氣壓計。一標准大氣壓(1atm)=760毫米汞柱(mmHg)。
液體壓強計算公式:P=ρgh
地面上標准大氣壓約等於760毫米高水銀柱產生的壓強。由於測量地區等條件的影響,所測數值不同。
根據液體壓強的公式P=ρgh,水銀的密度是13.6×10^3千克/立方米,因此76厘米高水銀柱產生的標准大氣壓強是:
P =13.6×10^3千克/立方米×9.8牛頓/千克×0.76米
≈1.013×10^5牛頓/平方米
=1.013×10^5帕斯卡
=0.1013Mpa(兆帕)
=1atm
=76cmHg
=760托
=760mmHg
1mmHg=1.01325*10^5Pa/760=133.32pa
產生原因
地球周圍包著一層厚厚的空氣,它主要是由氮氣、氧氣、二氧化碳、水蒸氣和氦、氖、氬等氣體混合組成的,通常把這層空氣的整體稱之為大氣層.它上疏下密地分布在地球的周圍,總厚度達1000千米,所有浸在大氣里的物體都要受到大氣作用於它的壓強,就像浸在水中的物體都要受到水的壓強吸管吸飲料就是因為大氣壓強的原因一樣。
大氣壓產生的原因可以從不同的角度來解釋。課本中主要提到的是:空氣受重力的作用,空氣又有流動性,因此向各個方向都有壓強。講得細致一些,由於地球對空氣的吸引作用,空氣壓在地面上,就要靠地面或地面上的其他物體來支持它,這些支持著大氣的物體和地面,就要受到大氣壓力的作用.單位面積上受到的大氣壓力,就是大氣壓強;第二,可以用分子運動的觀點解釋(分子運動論的知識將來初三會學到)因為氣體是由大量的做無規則運動的分子組成,而這些分子必然要對浸在空氣中的物體不斷地發生碰撞.每次碰撞,氣體分子都要給予物體表面一個沖擊力,大量空氣分子持續碰撞的結果就體現為大氣對物體表面的壓力,從而形成大氣壓。若單位體積中含有的分子數越多,則相同時間內空氣分子對物體表面單位面積上碰撞的次數越多,因而產生的壓強也就越大。
利用分子運動論的觀點可以解釋:為什麼大氣層不均勻分布,能造成大氣壓下高上低的現象。
標准大氣壓強
大氣壓強不但隨高度變化,在同一地點也不是固定不變的,通常把1.01325×10^5 Pa的大氣壓強叫做標准大氣壓強。它大約相當於760mm水銀柱所產生的壓強。標准大氣壓也可以叫做760mm水銀柱大氣壓。.
標准大氣壓強的值在一般計算中常取1.013×10^5 Pa(101KPa),在粗略計算中還可以取作10^5Pa(100KPa)。
推導公式
物體壓強
p=F/S (在都使用國際單位制時,單位是pa)
在受力面積一定時,壓力越大,壓強的作用效果越明顯。(此時壓強與壓力成正比) 在壓力不變的情況下,增大受力面積可以減小壓強;減小受力面積可以增大壓強.(此時壓強與受力面積成反比)
液體壓強
p=ρgh ( p液=F/S=G/S=mg/S=ρ液Vg/S=ρ液Shg/S=ρ液hg=ρ液gh)
(1)液體對容器底和側壁都有壓強,液體內部向各個方向都有壓強.
(2)液體的壓強隨深度增加而增大.在同種液體內部的同一深度處,液體向各個方向的壓強相等;不同的液體,在同一深度產生的壓強大小與液體的密度有關,密度越大,液體的壓強越大。
影響關系
大氣壓強與海拔高度
地球上面的空氣層密度不是相等的,靠近地表層的空氣密度較大,高層的空氣稀薄,密度較小.大氣壓強既然是由空氣重力產生的,高度大的地方,它上面空氣柱的高度小,密度也小,所以距離地面越高,大氣壓強越小.
在海拔3000m之內,每上升10m大氣壓強約減小100Pa,在海拔2000m之內,每上升12m大氣壓強約減小1mmHg。
地面上空氣的范圍極廣,常稱「大氣」。離地面200公里以上,仍有空氣存在。雖其密度很小,但如此高的大氣柱作用於地面上的壓強仍然極大。人體在大氣內毫不感覺受到氣壓的壓迫,這是因為人體的內外部同時受到氣壓的作用且恰好都相等的緣故。
氣體壓強與體積的關系
這里所說的氣體壓強並不是指大氣壓強,而是指一定質量的氣體的壓強.
由於氣體的壓強實質上是大量的做無規則運動的氣體分子與容器壁不斷碰撞而產生的,因此當其他條件不變的情況下,氣體體積減小會使氣體分子與容器壁碰撞的次數增多而使壓強增大.
在溫度不變時,一定質量的氣體體積越小,壓強越大;體積越大,壓強越小.
打氣筒就是利用這一原理製成的.
密閉容器內氣體壓強的影響因素
一定量的密閉氣體,其壓強與其體積、溫度等因素有關,具體可以表示為:PV=nRT;其中P表示氣體壓強,V表示氣體總體積,n表示氣體所含分子量,R為常量,T為氣體的溫度。由此也可印證,「在溫度不變時,一定質量的氣體體積越小,壓強越大;體積越大,壓強越小.」
機翼原理示意圖
沸點與大氣壓的關系
實驗表明,一切液體的沸點,都是氣壓減小時減小,氣壓增大時增大,同種液體的沸點不是固定不變的.說水的沸點是100℃必須強調是在標准大氣壓下.
由於氣壓隨高度降低,所以水的沸點隨高度降低,例如:海拔1000米處水沸點約97℃,3千米處約91℃,在海拔8844.43米的珠穆朗瑪峰頂,水在72℃就可以沸騰,因而在高山上燒飯要用不漏氣的高壓鍋,鍋內氣壓可以高於標准大氣壓,使水沸點高於100℃,不但飯熟得快,還可以節省燃料。
流體壓強與流速的關系
流體壓強與流速的關系:在氣體和液體中,流速越大的位置壓強越小(即伯努利原理)。飛機的升力:機翼上方的空氣流速大,壓強小;下方的空氣流速小,壓強大,這一壓強差產生壓力差,使飛機獲得豎直向上的升力。
應用編輯
活塞式抽水機是利用活塞的移動來排出空氣,造成內外氣壓差而使水在氣壓作用下上升抽出,當活塞壓下時,進水閥門關閉而排氣閥門打開;當活塞提上時,排氣閥門關閉,進水閥門打開,在外界大氣壓的作用下,水從進水管通過進水閥門從上方的出水口流出.這樣活塞在圓筒中上下往復運動,不斷地把水抽出來.
離心式水泵的工作原理
水泵在起動前,先往泵殼內灌滿水,排出泵殼內的空氣。當起動後,葉輪在電動機的帶動下高速旋轉,泵殼里的水也隨葉輪高速旋轉,由於離心力的作用而被甩入出水管中。這時葉輪附近的壓強減小,大氣壓使低處的水推開底閥,沿進水管泵殼,進來的水又被葉輪甩入出水管,這樣一直循環下去,就不斷把水抽到了高處.
活塞式抽水機和離心泵,都是利用大氣壓,把水抽上來,因為大氣壓有一定的限度,因而抽水機的汲水揚程——水面到水泵的高度差——也有一定的限度,不超過10.334米.當然,實際揚程遠遠大於這個高度,因為水被抽到了水泵後被泵「甩」了上去,可以達到很高的高度。
水壓
指水的壓強。用容器盛水時,由於水受重力,就有相當於那麼多重量的壓力,向容器的壁及底面作用。盛在容器中的水,對側面及底面都有壓力作用,對任何方向的面,壓力總是垂直於接觸面的。而且深度相同時,壓強也相同;液體越深,則壓強也越大。例如,在一個兩端開口的玻璃管的一端加一薄塑料片,開口一端向上,直放入水中時,薄片不會下落。這是因為有水向上托之力(即向上的壓力)。然後將水慢慢地一點點灌入玻璃管中,管內的水面未接近管外的水面時,塑料薄片不會掉下。這證明水有向上的壓力,給薄片一個支持的力。繼續加水至管內外水面相平時,管內水柱向下的壓力與管外薄片受到的向上壓力相等,由於塑料薄片本身的重量而落下。此時,筒底薄片所受之向下的壓力是筒中水柱的重量,所受之向上的壓力,為筒所排除水的重量,二者相等而方向相反,遂相消而等於零,薄片是受重力作用而落下。如將玻璃管傾斜放置,其結果也是一樣。即水的壓力向上,各側面都有壓力作用。
一般自來水水壓是0.7公斤左右,1MPa等於10公斤 ...1MPA=10公斤水壓2~3MPa ...1MPa=10kg/平方厘米 MPa兆帕為新單位 ...依照自來水供水規范,龍頭水。 一般認為0.1Mpa=10米,國家規定的管網末梢供壓是0.14Mpa,更直觀地說,0.1MPa,就相當於一個標准大氣壓,管網末梢供壓是0.14Mpa,相當於水龍頭離供水塔(池)有14米的高度。所以,家住的位置越高,水壓就會越低。
1.水壓與水的多少無關,只與水的深淺和密度有關系。(水越深,水壓大;密度越大,水壓越大),在實際生活中,家中水壓還受水管的彎折度和影響,彎折次數越多,水壓就會有所減小。
2.水越深處,水壓越大
3.在同樣的深度上,水壓對四周都有壓力
計算公式
p=ρgh(p是壓強,ρ是液體密度,水的密度為1×10^3kg/m^3,g是重力加速度取9.8 N/kg,h是取壓點到液面高度)
『柒』 籌碼峰選股方法
方法如下:
1、第一、籌碼低位單峰密集突破買法:經過長時間的盤整,籌碼峰逐漸由頂部向低處移動,開始形成單峰密集形態。在關鍵的一天,股價突破了單峰密集的籌碼高點。這時候需要有成交量的配合,預示著上升趨勢將開始。單峰越密集,一旦突破上攻越強。操作要點:單峰密集型籌碼一旦突破,未來看漲,適時買入。
2、回調密集頂峰支撐:股價在低位橫排後,形成單峰密集籌碼,然後大量突破單峰籌碼。價格小幅上漲後,有退步的趨勢。如此密集的籌碼峰值,將對股價形成強有力的支撐,不可後退,再次大舉出擊。在這種情況下,多半是主力上漲浪的開始,買入的最佳時機是踩下籌碼峰值支撐,然後大漲的概率就大了。操作要點:低位密集支撐,後市看好,買入機會。
三、突破前期高單峰密度:股價經過一輪上揚後,在高位以單峰密集籌碼的形式出現。股價的上漲突破了此前的高密集籌碼高峰,創下歷史新高。這個時候可以買。單峰密集籌碼峰作為止損倉位。這個倉位沒有破,持股主要是坐等漲。這種買入方式只適合短線操作。主要是快進快出。嚴格執行紀律。操作要點:短線操作。前期突破籌碼高位,短線看漲。
拓展資料:
籌碼分布的組成
1.籌碼柱:籌碼柱由不同長度的籌碼磁珠組成。每個橫向主力代表一個價格。列的長度代表價格對應的交易量。列越長,該價格的交易越多。如果股價長期保持在某個價位附近,並且有大量交易,通常對應的籌碼會非常密集,形成一個小的三頭封裝。這種山丘就是我們常說的籌碼峰。
2.籌碼顏色:紅色為盈利,藍色為持市;紅色和黃色的交界處是當前價格。
3.平均成本線:中間的黃線是當前市場所有倉位的平均成本線,是整個成本分布的重點。
4、利潤率:是在當前價格下的市場利潤比例。利潤率越高,越多人處於盈利狀態。
5. 獲利回吐:任意價格的獲利回吐次數。
6. 90%和70%的區間表示市場上90%和70%的籌碼分布的價格區間。
7.集中度:它顯示了籌碼的密度。值越高,越發散,反之亦然。
8、籌碼乖離率:利潤籌碼價格與平均成本之間的距離。盈利籌碼價格是低於平均價格的負偏差。離得越遠,負偏差越大。在頂部,離開是好的。
『捌』 籌碼密集度變高好還是低好
我們不能簡單地認為籌碼密集度是高還是低好,這需要具體分析。 如果籌碼集中度高,就證明銀行家持股程度越高,對大股東來說是好事。 由於股價穩定,未來股價容易被拉高。 但對於散戶投資者來說,沒有盈利空間。 如果籌碼集中度低,則證明交易相對冷淡,只有散戶參與,資金量較小,波動空間較小。 因此,籌碼由低到高的集中度對散戶更為有利。
拓展資料:
1、晶元密度是晶元分布的一種特殊形式,也稱為晶元集中度。在南京金鑰匙投資決策系統中,如果一隻股票80%以上的流通籌碼都集中在20%的狹窄空間(收盤價上下空間的10%),則定義為籌碼密度。籌碼分配是籌碼持有成本的分配。籌碼密度反映了一隻股票中大部分流通籌碼的持有成本相對集中。一個指數的切屑密度也是由該指數的流通切屑濃度來定義的,基本概念是一樣的。
2、晶元來密綜合,在股價上漲的過程中,底部的盈利籌碼隨著易手不斷拋售,持有和抬高成本的重點也在不斷上移。當底部的盈利籌碼被鼓吹散播,頻繁被他人高價買賣時,股價就會逐漸上漲。一旦投資者追漲意願減弱,隨著主力盈利籌碼加速分配,大部分流通籌碼向股價附近區域集中,逐漸形成籌碼密度。在股價下跌的過程中,高層夾層晶元隨著易手不斷銷售,持有和提高成本的重點也在不斷向下轉移。當高級被子晶元頻繁被他人以較低價格交易時,股價會逐漸下跌。一旦投資者的止損意願降低,恐慌情緒就可以得到充分釋放。隨著讀底資金的不斷走強,大部分流通籌碼向股價附近區域轉移並集中,逐漸形成籌碼密度。
3、形式,晶元密度按晶元分布形式可分為單峰密度、雙峰密度和多峰密度。不同形態的晶元密度對股價後期走勢的影響不同。位置壓縮K線圖,查看股價的歷史走勢。根據晶元密度相對較高,分為高級密度、二級高級密度、中級密度、二級低級密度和低級密度。不同倉位的籌碼密度對股價後期走勢的影響不同。
4、特徵,晶元密度是晶元理論研究判斷是否存在主要資本的主要依據之一。晶元密集型股票可能沒有大資本干預,大資本干預股票可能沒有高度控制,而大資本高度控制的股票可能不必先突破並上漲。
『玖』 如何在matlab中使用metropolis-hasting演算法
MH演算法也是一種基於模擬的MCMC技術,一個很重要的應用是從給定的概率分布中抽樣。主要原理是構造了一個精妙的Markov鏈,使得該鏈的穩態 是你給定的概率密度。它的好處,不用多說,自然是可以對付數學形式復雜的概率密度。有人說,單維的MH演算法配上Gibbs Sampler幾乎是「無敵」了。今天試驗的過程中發現,MH演算法想用好也還不簡單,裡面的轉移參數設定就不是很好弄。即使用最簡單的高斯漂移項,方差的確定也是個頭疼的問題,需要不同問題不同對待,多試驗幾次。當然你也可以始終選擇「理想」參數。還是拿上次的混合高斯分布來做模擬,模擬次數為500000次的時候,概率分布逼近的程度如下圖。雖然幾個明顯的"峰"已經出來了,但是數值上還是 有很大差異的。估計是我的漂移方差沒有選好。感覺還是inverse sampling好用,迭代次數不用很多,就可以達到相當的逼近程度。
試了一下MH演算法,R Code:
p=function(x,u1,sig1,u2,sig2){
(1/3)*(1/(sqrt(2*pi)*15)*exp(-0.5*(x-70)^2/15^2)+1/(sqrt(2*pi)*11)*exp(-0.5*(x+80)^2/11^2)+1/(sqrt(2*pi)*sig1)*exp(-0.5*(x-u1)^2/sig1^2)+1/(sqrt(2*pi)*sig2)*exp(-0.5*(x-u2)^2/sig2^2))
}
MH=function(x0,n){
x=NULL
x[1] = x0
for (i in 1:n){
x_can= x[i]+rnorm(1,0,3.25)
d= p(x_can,10,30,-10,10)/p(x[i],10,30,-10,10)
alpha= min(1,d)
u=runif(1,0,1)
if (u<alpha){
x[i+1]=x_can}
else{
x[i+1]=x[i]
}
if (round(i/100)==i/100) print(i)
}
x
}
z=MH(10,99999)
z=z[-10000]
a=seq(-100,100,0.2)
plot(density(z),col=1,main='Estimated Density',ylim=c(0,0.02),lty=1)
points(a, p(a,10,30,-10,10),pch='.',col=2,lty=2)
legend(60,0.02,c("True","Sim (MH)"),col=c(1,2),lty=c(1,2))
『拾』 最大幹密度的計算方法
普通計算
a、壓實度:振動碾壓完兩遍後開始檢驗壓實度,每增加碾壓兩遍後再次檢驗壓實度,直至壓實度達到要求,採用灌砂法按隨機取樣的方法檢驗壓實度試驗。壓實度檢測如果合格即可停止碾壓,否則繼續碾壓,每碾壓完一遍後檢驗壓實度,檢測頻率為2000m2檢測8點。
b、高程(厚度、松鋪系數):上料前布點,並按照測點位置測量下承層頂面高程;在精平後,測量填料頂部高程;碾壓完畢後檢測相同點位的高程,計算厚度、松鋪系數。
c、寬度:底部通過劃邊線控制寬度,頂部通過拉鋼尺檢測壓實後中樁至邊緣的寬度。
d、軸線:上土前按照設計樁位每20米布設中樁,碾壓後通過恢復中樁檢測中樁偏位情況。
2)檢測控制指標:
壓實度:每層不小於規定值;
寬度:每側寬度不小於設計寬度+30cm;
中線偏位:50mm;
厚度、高程、松鋪系數。
3)做好各項檢測指標原始記錄的收集工作。
7、試驗段成果整理及總結報告:
認真做好試驗段的成果整理,總結如下內容:
1)確定最佳的壓實厚度和松鋪系數。
2)確定最佳機械組合。
3)確定不同機械組合下的最經濟壓實遍數。
4)確定最佳壓實厚度和機械組合及壓實遍數。
8、四區標示(上土區、平整區、碾壓區、檢測區)
由於試驗路段較短,作業面無法大面積展開,在路基的大面積施工中,採取四區標示法,規范現場,文明施工。
數值分析[span]
[span]在土方工程中,土的最大幹密度和最優含水量是確保路基壓實質量的兩個關鍵指標。針對目前利用室內標准擊實試驗確定最大幹密度和最優含水量存在的隨意性問題,提出利用數值分析方法中的牛頓插值和迭代方法來擬合土樣的擊實曲線,構建關於干密度與含水量之間的函數關系式,對其求導可以得到最大幹密度和最優含水量。並利用Matlab編制牛頓插值和迭代的函數代碼,從而簡化了求解過程,提高效率和精度。該方法為求解最大幹密度和最優含水量提供了理論依據,為處理擊實試驗數據提供了一種可行的新方法。