深度計算要搭建伺服器嘛
『壹』 做深度學習的伺服器需要哪些配置
要做一個深度學習的伺服器,需要的配置有GPU RAM, 儲存器,因為GPU是在我做深度學習伺服器裡面一個非常重要的部分,相當於是一個心臟,是非常核心的一個伺服器,所以GPU是一個非常重要的東西,儲存器也是相當重要的,因為很多數據都要放在ssd儲存器上。
『貳』 深度學習 對硬體的要求
之前熱衷於學習理論知識,目前想跑代碼了發現不知道從何下手,自己電腦上搭建的平台基本就是個擺設,因為跑不起來呀。今天我們就來看看想做深度學習應該怎麼下手。
首先了解下基礎知識:
1、深度學慣用cpu訓練和用gpu訓練的區別
(1)CPU主要用於串列運算;而GPU則是大規模並行運算。由於深度學習中樣本量巨大,參數量也很大,所以GPU的作用就是加速網路運算。
(2)CPU算神經網路也是可以的,算出來的神經網路放到實際應用中效果也很好,只不過速度會很慢罷了。而目前GPU運算主要集中在矩陣乘法和卷積上,其他的邏輯運算速度並沒有CPU快。
目前來講有三種訓練模型的方式:
1. 自己配置一個「本地伺服器」,俗稱高配的電腦。
這個選擇一般是台式機,因為筆記本的「高配」實在是太昂貴了,同一個價格可以買到比筆記本好很多的配置。如果是長期使用,需要長期從事深度學習領域的研究,這個選擇還是比較好的,比較自由。
①
預算一萬以內的機器學習台式機/主機配置:
②
從李飛飛的課程里,可以看到她的電腦配置,這個配置是機器學習的基本設置。
內存:4X8G
顯示卡: 兩個NV GTX 1070
硬碟: HDD一個, SSD兩個
③ 配置主機需要了解的參數(在上一篇博客中已經詳細介紹了各個參數的含義):
GPU:一個好的GPU可以將你的訓練時間從幾周縮減成幾天,所以選GPU一定要非常慎重。可以參看GPU天梯榜,都是一些比較新的型號具有很強的性能。
在英偉達產品系列中,有消費領域的GeForce系列,有專業繪圖領域的Quadro系列,有高性能計算領域的Tesla系列,如何選擇?有論文研究,太高的精度對於深度學習的錯誤率是沒有提升的,而且大部分的環境框架都只支持單精度,所以雙精度浮點計算是不必要,Tesla系列都去掉了。從顯卡效能的指標看,CUDA核心數要多,GPU頻率要快,顯存要大,帶寬要高。這樣,最新Titan
X算是價格便宜量又足的選擇。
CPU:總的來說,你需要選擇一個好的GPU,一個較好的CPU。作為一個高速的串列處理器,常用來作為「控制器」使用,用來發送和接收指令,解析指令等。由於GPU內部結構的限制,使得它比較適合進行高速的並行運算,而並不適合進行快速的指令控制,而且許多的數據需要在GPU和CPU之間進行存取,這就需要用到CPU,因為這是它的強項。
內存條:主要進行CPU和外設之間的數據交換,它的存取速度要比硬碟快好幾倍,但是價格比較昂貴,通常會和容量成正比。內存大小最起碼最起碼最起碼要大於你所選擇的GPU的內存的大小(最好達到顯存的二倍,當然有錢的話越大越好)。在深度學習中,會涉及到大量的數據交換操作(例如按batch讀取數據)。當然你也可以選擇將數據存儲在硬碟上,每次讀取很小的batch塊,這樣你的訓練周期就會非常長。常用的方案是「選擇一個較大的內存,每次從硬碟中讀取幾個batch的數據存放在內存中,然後進行數據處理」,這樣可以保證數據不間斷的傳輸,從而高效的完成數據處理的任務。
電源問題:一個顯卡的功率接近300W,四顯卡建議電源在1500W以上,為了以後擴展,可選擇更大的電源。
固態硬碟:作為一個「本地存儲器」,主要用於存儲各種數據。由於其速度較慢,價格自然也比較便宜。建議你選擇一個較大容量的硬碟,通常會選擇1T/2T。一個好的方法是:「你可以利用上一些舊的硬碟,因為硬碟的擴展十分簡單,這樣可以節省一部分資金。」
『叄』 做深度學習,需要配置專門的GPU伺服器嗎
深度學習是需要配置專門的GPU伺服器的:
深度學習的電腦配置要求:
1、數據存儲要求
在一些深度學習案例中,數據存儲會成為明顯的瓶頸。做深度學習首先需要一個好的存儲系統,將歷史資料保存起來。
主要任務:歷史數據存儲,如:文字、圖像、聲音、視頻、資料庫等。
數據容量:提供足夠高的存儲能力。
讀寫帶寬:多硬碟並行讀寫架構提高數據讀寫帶寬。
介面:高帶寬,同時延遲低。
傳統解決方式:專門的存儲伺服器,藉助萬兆埠訪問。
缺點:帶寬不高,對深度學習的數據讀取過程時間長(延遲大,兩台機器之間數據交換),成本還巨高。
2、CPU要求
當你在GPU上跑深度網路時,CPU進行的計算很少,但是CPU仍然需要處理以下事情:
(1)數據從存儲系統調入到內存的解壓計算。
(2)GPU計算前的數據預處理。
(3)在代碼中寫入並讀取變數,執行指令如函數調用,創建小批量數據,啟動到GPU的數據傳輸。
(4)GPU多卡並行計算前,每個核負責一塊卡的所需要的數據並行切分處理和控制。
(5)增值幾個變數、評估幾個布爾表達式、在GPU或在編程裡面調用幾個函數——所有這些會取決於CPU核的頻率,此時唯有提升CPU頻率。
傳統解決方式:CPU規格很隨意,核數和頻率沒有任何要求。
3、GPU要求
如果你正在構建或升級你的深度學習系統,你最關心的應該也是GPU。GPU正是深度學習應用的核心要素——計算性能提升上,收獲巨大。
主要任務:承擔深度學習的數據建模計算、運行復雜演算法。
傳統架構:提供1~8塊GPU。
4、內存要求
至少要和你的GPU顯存存大小相同的內存。當然你也能用更小的內存工作,但是,你或許需要一步步轉移數據。總而言之,如果錢夠而且需要做很多預處理,就不必在內存瓶頸上兜轉,浪費時間。
主要任務:存放預處理的數據,待GPU讀取處理,中間結果存放。
深度學習需要強大的電腦算力,因此對電腦的硬體配置自然是超高的,那麼現在普通的高算力電腦需要高配置硬體。