當前位置:首頁 » 編程軟體 » 編譯原理數組的翻譯三地址代碼

編譯原理數組的翻譯三地址代碼

發布時間: 2024-12-25 00:53:18

編譯程序有編譯和翻譯兩種方式分別對其說明並比較 急 在線等

編譯程序 編譯程序
compiler
把用高級程序設計語言書寫的源程序,翻譯成等價的計算機匯編語言或機器語言的目標程序的翻譯程序。編譯程序屬於採用生成性實現途徑實現的翻譯程序。它以高級程序設計語言書寫的源程序作為輸入,而以匯編語言或機器語言表示的目標程序作為輸出。編譯出的目標程序通常還要經歷運行階段,以便在運行程序的支持下運行,加工初始數據,算出所需的計算結果。編譯程序的實現演算法較為復雜。這是因為它所翻譯的語句與目標語言的指令不是一一對應關系,而是一多對應關系;同時也因為它要處理遞歸調用、動態存儲分配、多種數據類型,以及語句間的緊密依賴關系。但是,由於高級程序設計語言書寫的程序具有易讀、易移植和表達能力強等特點,編譯程序廣泛地用於翻譯規模較大、復雜性較高、且需要高效運行的高級語言書寫的源程序。
功能 編譯程序的基本功能是把源程序翻譯成目標程序。但是,作為一個具有實際應用價值的編譯系統,除了基本功能之外,還應具備語法檢查、調試措施、修改手段、覆蓋處理、目標程序優化、不同語言合用以及人-機聯系等重要功能。①語法檢查:檢查源程序是否合乎語法。如果不符合語法,編譯程序要指出語法錯誤的部位、性質和有關信息。編譯程序應使用戶一次上機,能夠盡可能多地查出錯誤。②調試措施:檢查源程序是否合乎設計者的意圖。為此,要求編譯程序在編譯出的目標程序中安置一些輸出指令,以便在目標程序運行時能輸出程序動態執行情況的信息,如變數值的更改、程序執行時所經歷的線路等。這些信息有助於用戶核實和驗證源程序是否表達了演算法要求。③修改手段:為用戶提供簡便的修改源程序的手段。編譯程序通常要提供批量修改手段(用於修改數量較大或臨時不易修改的錯誤)和現場修改手段(用於運行時修改數量較少、臨時易改的錯誤)。④覆蓋處理:主要是為處理程序長、數據量大的大型問題程序而設置的。基本思想是讓一些程序段和數據公用某些存儲區,其中只存放當前要用的程序或數據;其餘暫時不用的程序和數據,先存放在磁碟等輔助存儲器中,待需要時動態地調入。⑤目標程序優化:提高目標程序的質量,即佔用的存儲空間少,程序的運行時間短。依據優化目標的不同,編譯程序可選擇實現表達式優化、循環優化或程序全局優化。目標程序優化有的在源程序級上進行,有的在目標程序級上進行。⑥不同語言合用:其功能有助於用戶利用多種程序設計語言編寫應用程序或套用已有的不同語言書寫的程序模塊。最為常見的是高級語言和匯編語言的合用。這不但可以彌補高級語言難於表達某些非數值加工操作或直接控制、訪問外圍設備和硬體寄存器之不足,而且還有利於用匯編語言編寫核心部分程序,以提高運行效率。⑦人-機聯系:確定編譯程序實現方案時達到精心設計的功能。目的是便於用戶在編譯和運行階段及時了解內部工作情況,有效地監督、控制系統的運行。
早期編譯程序的實現方案,是把上述各項功能完全收納在編譯程序之中。然而,習慣做法是在操作系統的支持下,配置調試程序、編輯程序和連接裝配程序,用以協助實現程序的調試、修改、覆蓋處理,以及不同語言合用功能。但在設計編譯程序時,仍須精心考慮如何與這些子系統銜接等問題。
工作過程 編譯程序必須分析源程序,然後綜合成目標程序。首先,檢查源程序的正確性,並把它分解成若干基本成分;其次,再根據這些基本成分建立相應等價的目標程序部分。為了完成這些工作,編譯程序要在分析階段建立一些表格,改造源程序為中間語言形式,以便在分析和綜合時易於引用和加工(圖1)。
數據結構 分析和綜合時所用的主要數據結構,包括符號表、常數表和中間語言程序。符號表由源程序中所用的標識符連同它們的屬性組成,其中屬性包括種類(如變數、數組、結構、函數、過程等)、類型(如整型、實型、字元串、復型、標號等),以及目標程序所需的其他信息。常數表由源程序中用的常數組成,其中包括常數的機內表示,以及分配給它們的目標程序地址。中間語言程序是將源程序翻譯為目標程序前引入的一種中間形式的程序,其表示形式的選擇取決於編譯程序以後如何使用和加工它。常用的中間語言形式有波蘭表示、三元組、四元組以及間接三元組等。
分析部分 源程序的分析是經過詞法分析、語法分析和語義分析三個步驟實現的。詞法分析由詞法分析程序(又稱為掃描程序)完成,其任務是識別單詞(即標識符、常數、保留字,以及各種運算符、標點符號等)、造符號表和常數表,以及將源程序換碼為編譯程序易於分析和加工的內部形式。語法分析程序是編譯程序的核心部分,其主要任務是根據語言的語法規則,檢查源程序是否合乎語法。如不合乎語法,則輸出語法出錯信息;如合乎語法,則分解源程序的語法結構,構造中間語言形式的內部程序。語法分析的目的是掌握單詞是怎樣組成語句的,以及語句又是如何組成程序的。語義分析程序是進一步檢查合法程序結構的語義正確性,其目的是保證標識符和常數的正確使用,把必要的信息收集和保存到符號表或中間語言程序中,並進行相應的語義處理。
綜合部分 綜合階段必須根據符號表和中間語言程序產生出目標程序,其主要工作包括代碼優化、存儲分配和代碼生成。代碼優化是通過重排和改變程序中的某些操作,以產生更加有效的目標程序。存儲分配的任務是為程序和數據分配運行時的存儲單元。代碼生成的主要任務是產生與中間語言程序符等價的目標程序,順序加工中間語言程序,並利用符號表和常數表中的信息生成一系列的匯編語言或機器語言指令。
結構 編譯過程分為分析和綜合兩個部分,並進一步劃分為詞法分析、語法分析、 語義分析、 代碼優化、存儲分配和代碼生成等六個相繼的邏輯步驟。這六個步驟只表示編譯程序各部分之間的邏輯聯系,而不是時間關系。編譯過程既可以按照這六個邏輯步驟順序地執行,也可以按照平行互鎖方式去執行。在確定編譯程序的具體結構時,常常分若干遍實現。對於源程序或中間語言程序,從頭到尾掃視一次並實現所規定的工作稱作一遍。每一遍可以完成一個或相連幾個邏輯步驟的工作。例如,可以把詞法分析作為第一遍;語法分析和語義分析作為第二遍;代碼優化和存儲分配作為第三遍;代碼生成作為第四遍。反之,為了適應較小的存儲空間或提高目標程序質量,也可以把一個邏輯步驟的工作分為幾遍去執行。例如,代碼優化可劃分為代碼優化准備工作和實際代碼優化兩遍進行。
一個編譯程序是否分遍,以及如何分遍,根據具體情況而定。其判別標准可以是存儲容量的大小、源語言的繁簡、解題范圍的寬窄,以及設計、編制人員的多少等。分遍的好處是各遍功能獨立單純、相互聯系簡單、邏輯結構清晰、優化准備工作充分。缺點是各遍之中不可避免地要有些重復的部分,而且遍和遍之間要有交接工作,因之增加了編譯程序的長度和編譯時間。
一遍編譯程序是一種極端情況,整個編譯程序同時駐留在內存,彼此之間採用調用轉接方式連接在一起(圖2)。當語法分析程序需要新符號時,它就調用詞法分析程序;當它識別出某一語法結構時,它就調用語義分析程序。語義分析程序對識別出的結構進行語義檢查,並調用「存儲分配」和「代碼生成」程序生成相應的目標語言指令。
隨著程序設計語言在形式化、結構化、直觀化和智能化等方面的發展,作為實現相應語言功能的編譯程序,也正向自動程序設計的目標發展,以便提供理想的程序設計工具。
參考書目
陳火旺、錢家驊、孫永強編:《編譯原理》,國防工業出版社,北京,1980。
A.V.Aho, Principles of Compiler Design,Addison Wes-ley, Reading, Massachusetts, 1977.
--------------------------------------------------------------------------------
編譯程序 (compiler)
將用高級程序設計語言書寫的源程序,翻譯成等價的用計算機匯編語言、機器語言或某種中間語言表示的目標程序的翻譯程序。用戶利用編譯程序實現數據處理任務時,先要經歷編譯階段,再經歷運行階段。編譯階段以源程序作為輸入,以目標程序作為輸出,其主要任務是將源程序翻譯成目標程序。運行階段的任務是運行所編譯出的目標程序,實現源程序中指定的數據處理任務,其工作通常包括:輸入初始數據,對數據或文件進行數據加工,輸出必要信息和加工結果等。編譯程序的實現演算法較為復雜。這是因為它所翻譯的語句與目標語言的指令不是一一對應關系,而是一多對應關系;同時因為它要在編譯階段處理遞歸調用、動態存儲分配、多種數據類型 實現 、 代碼生成與代碼優化等繁雜技術問題;還要在運行階段提供良好、有效的運行環境。由於高級程序設計語言書寫的程序具有易讀、易移植和表達能力強等特點,所以編譯程序廣泛地用於翻譯規模較大、復雜性較高、且需要高效運行的高級語言書寫的源程序。
功能 編譯程序的基本功能是把源程序翻譯成目標程序。此外,還要具備語法檢查、調試措施、修改手段、覆蓋處理、目標程序優化、不同語言合用以及人機聯系等具有實際應用價值的重要功能。①語法檢查。檢查源程序是否合乎語法 。②調試措施。檢查源程序是否合乎用戶的設計意圖。③修改手段。為用戶提供簡便的修改源程序的手段。④覆蓋處理。主要為處理程序較長、數據量較大的大型問題程序而設置。基本思想是讓一些程序段和數據公用某些存儲區,其中只存放當前要用的程序段或數據,其餘暫時不用的程序段和數據均存放在磁碟等輔助存儲器中,待需要時動態地調入存儲區中運行。⑤目標程序優化。提高目標程序的質量,即使編譯出的目標程序運行時間短、佔用存儲少。⑥不同語言合用 。便於用戶利用多種程序設計語言編寫應用程序或套用已有的不同語言書寫的程序模塊。最為常見的是高級語言和匯編語言的合用。⑦人機聯系。便於用戶在編譯和運行階段及時了解系統內部工作情況,有效地監督、控制系統的運行。
早期編譯程序的實現方案,是把上述各項功能完全收納在編譯程序之中 。後來的習慣方法是在操作系統的支持下,配置編輯程序、調試程序、連接裝配程序等實用程序或工具軟體,目的是創造一個良好的開發環境和運行環境,便於應用軟體的編程、修改、調試、集成以及報表生成、界面設計等工作。但編譯程序設計者設計編譯方案時,仍需精心考慮上述各項功能,較好地解決目標程序與這些實用程序或軟體工具之間的配合與銜接等問題。
工作過程 編譯程序必須分析源程序,然後綜合成目標程序。為達到這個目的,編譯程序要在分析階段建立一些表格,改造源程序為中間語言形式,以便在分析和綜合時易於引用和加工。
數據結構 分析和綜合時所用的主要數據結構,包括符號表、常數表和中間語言程序。符號表由源程序中所用的標識符連同它們的屬性組成,其中屬性包括種類(如變數、數組、結構、函數、過程等)、類型(如整型、實型、字元串、復型、標號等),以及目標程序所需的其他信息。常數表由源程序中用的常數組成,其中包括常數的機內表示以及分配給它們的目標程序地址。中間語言程序是將源程序翻譯成目標程序前引入的一種中間形式的程序,其表示形式的選擇取決於編譯程序以後如何使用它和如何加工它。常用的中間語言形式有波蘭表示、三元組、四元組以及間接三元組等。
分析部分 源程序的分析是經過詞法分析、語法分析和語義分析三個步驟實現的。詞法分析由詞法分析程序(又稱為掃描程序 )完成,其任務是識別單詞(即標識符 、常數、保留字,以及各種運算符、標點符號等)、造符號表和常數表,以及將源程序換碼為編譯程序易於分析和加工的內部形式。語法分析程序是編譯程序的核心部分,其主要任務是根據語言的語法規則,檢查源程序是否合乎語法,並分解源程序。如果不合乎語法,則輸出語法出錯信息;如果合乎語法,則分解源程 序的語法結構, 構造中間語 言形式的內部程序。語法分析的目的是掌握單詞是怎樣組成語句的,以及語句又是如何組成程序的。語義分析程序進一步檢查合法程序結構的語義正確性,其目的是保證標識符和常數的正確使用,把必要的信息收集和保存到符號表或中間語言程序中,並進行相應的語義處理。
綜合部分 綜合階段根據符號表和中間語言程序產生出目標程序,其主要工作包括代碼優化、存儲分配和代碼生成。代碼優化是通過重排和改變程序中的某些操作,以產生更加有效的目標程序。存儲分配是為程序和數據分配運行時的存儲單元。 代碼生成是產 生與中間語 言程序等價的目標程序,亦即,順序加工中間語言程序,利用符號表和常數表中的信息生成一系列的匯編語言或機器語言指令。
動態 20世紀80年代以後,程序設計語言在形式化、結構化、直觀化和智能化等方面有了長足的進步和發展,主要表現在兩個方面:①隨著程序設計理論和方法的發展,相繼推出了一系列新型程序設計語言,如結構化程序設計語言、並發程序設計語言、分布式程序設計語言、函數式程序設計語言、智能化程序設計語言、面向對象程序設計語言等;②基於語法、語義和語用方面的研究成果,從不同的角度和層次上深刻地揭示了程序設計語言的內在規律和外在表現形式。與此相應地,作為實現程序設計語言重要手段之一的編譯程序,在體系結構、設計思想、實現技術和處理內容等方面均有不同程度的發展、變化和擴充。另外,編譯程序已作為實現編程的重要軟體工具,被納入到軟體支援環境的基本層軟體工具之中。因此,規劃編譯程序實現方案時,應從所處的具體軟體支援環境出發,既要遵循整個環境的全局性要求和規定,又要精心考慮與其他諸層軟體 工具之間的相互支援、配合和銜接關系。

Ⅱ 編譯原理什麼是素短語

編譯原理中,素短語是至少含義一個終結符,並且自身不包含任何更小素短語的一種短語。

素短語是一種特殊的短語,它是一個遞歸的定義,至少含有一個終結符,並且除它自身之外不再含任何更小的素短語,所謂最左素短語就是處於句型最左邊的素短語的短語。

一個算符優先文法G的任何句型的最左素短語是滿足以下條件的最左子串NaNb…NcNdN(N是非終結符,a,b,c,d是終結符)。例如:句型T+T*F+id,T*F是最左素短語,id是素短語。

(2)編譯原理數組的翻譯三地址代碼擴展閱讀:

通過語法樹可以得知素短語:

1、每個句型對應一棵語法樹

2、每棵語法樹的葉子結點從左到右排列構成一個句型

3、每棵語法樹的子樹的葉子結點從左到右排列構成一個短語

4、每棵語法樹的簡單子樹(只有父子兩層結點)的葉子結點從左到右排列構成一個簡單(直接)短語。

5、素短語是至少包含一個終結符的短語,但它不能包含其它素短語。

Ⅲ 編譯原理的實質

計算機程序編譯原理的實質就是把程序員員容易理解的高級語言程序代碼流翻譯成計算機可執行的機器指令代碼流。可以使用「一斷、二比、三譯」形象說明實質。
1、斷。按照語言的語法規則掃描斷詞,結合文法詞典把程序字元串流分解成為計算機語言能夠識別的基本單元(標識詞、運算符)。
2、比。從程序流中找出擴展標識詞的定義,建立標識詞結構,放入文法詞典,服務於新的定義和函數程序代碼的編譯。程序語句、表達式裡面使用的標識可以從詞典中比較找到。
3、譯。把函數程序文本字元串流中的算術表達式、賦值語句、控制語句翻譯成為計算機機器語言二進制代碼流。
4、組裝函數翻譯後的二進制代碼流,明確數據空間地址和大小,生成計算機裸機或操作系統可以執行目標代碼。

Ⅳ 編譯原理試題·

Lex和Yacc應用方法(一).初識Lex
草木瓜 20070301
Lex(Lexical Analyzar 詞法分析生成器),Yacc(Yet Another Compiler Compiler
編譯器代碼生成器)是Unix下十分重要的詞法分析,語法分析的工具。經常用於語言分
析,公式編譯等廣泛領域。遺憾的是網上中文資料介紹不是過於簡單,就是跳躍太大,
入門參考意義並不大。本文通過循序漸進的例子,從0開始了解掌握Lex和Yacc的用法。

一.Lex(Lexical Analyzar) 初步示例
先看簡單的例子(註:本文所有實例皆在RetHat linux下完成):
一個簡單的Lex文件 exfirst.l 內容:
%{
#include "stdio.h"
%}
%%
[\n] ;
[0-9]+ printf("Int : %s\n",yytext);
[0-9]*\.[0-9]+ printf("Float : %s\n",yytext);
[a-zA-Z][a-zA-Z0-9]* printf("Var : %s\n",yytext);
[\+\-\*\/\%] printf("Op : %s\n",yytext);
. printf("Unknown : %c\n",yytext[0]);
%%
在命令行下執行命令flex解析,會自動生成lex.yy.c文件:
[root@localhost liweitest]flex exfirst.l
進行編譯生成parser可執行程序:
[root@localhost liweitest]cc -o parser lex.yy.c -ll
[注意:如果不加-ll鏈結選項,cc編譯時會出現以下錯誤,後面會進一步說明。]
/usr/lib/gcc-lib/i386-redhat-linux/3.2.2/../../../crt1.o(.text+0x18): In function `_start':
../sysdeps/i386/elf/start.S:77: undefined reference to `main'
/tmp/cciACkbX.o(.text+0x37b): In function `yylex':
: undefined reference to `yywrap'
/tmp/cciACkbX.o(.text+0xabd): In function `input':
: undefined reference to `yywrap'
collect2: ld returned 1 exit status

創建待解析的文件 file.txt:
title
i=1+3.9;
a3=909/6
bcd=4%9-333
通過已生成的可執行程序,進行文件解析。
[root@localhost liweitest]# ./parser < file.txt
Var : title
Var : i
Unknown : =
Int : 1
Op : +
Float : 3.9
Unknown : ;
Var : a3
Unknown : =
Int : 909
Op : /
Int : 6
Var : bcd
Unknown : =
Int : 4
Op : %
Int : 9
Op : -
Int : 333
到此Lex用法會有個直觀的了解:
1.定義Lex描述文件
2.通過lex,flex工具解析成lex.yy.c文件
3.使用cc編譯lex.yy.c生成可執行程序

再來看一個比較完整的Lex描述文件 exsec.l :

%{
#include "stdio.h"
int linenum;
%}
%%
title showtitle();
[\n] linenum++;
[0-9]+ printf("Int : %s\n",yytext);
[0-9]*\.[0-9]+ printf("Float : %s\n",yytext);
[a-zA-Z][a-zA-Z0-9]* printf("Var : %s\n",yytext);
[\+\-\*\/\%] printf("Op : %s\n",yytext);
. printf("Unknown : %c\n",yytext[0]);
%%
showtitle()
{
printf("----- Lex Example -----\n");
}
int main()
{
linenum=0;
yylex(); /* 進行分析 */
printf("\nLine Count: %d\n",linenum);
return 0;
}
int yywrap()
{
return 1;
}
進行解析編譯:
[root@localhost liweitest]flex exsec.l
[root@localhost liweitest]cc -o parser lex.yy.c
[root@localhost liweitest]./parser < file.txt
----- Lex Example -----
Var : i
Unknown : =
Int : 1
Op : +
Float : 3.9
Unknown : ;
Var : a3
Unknown : =
Int : 909
Op : /
Int : 6
Var : bcd
Unknown : =
Int : 4
Op : %
Int : 9
Op : -
Int : 333
Line Count: 4
這里就沒有加-ll選項,但是可以編譯通過。下面開始著重整理下Lex描述文件.l。

二.Lex(Lexical Analyzar) 描述文件的結構介紹
Lex工具是一種詞法分析程序生成器,它可以根據詞法規則說明書的要求來生成單詞識
別程序,由該程序識別出輸入文本中的各個單詞。一般可以分為<定義部分><規則部
分><用戶子程序部分>。其中規則部分是必須的,定義和用戶子程序部分是任選的。

(1)定義部分
定義部分起始於 %{ 符號,終止於 %} 符號,其間可以是包括include語句、聲明語句
在內的C語句。這部分跟普通C程序開頭沒什麼區別。
%{
#include "stdio.h"
int linenum;
%}
(2) 規則部分
規則部分起始於"%%"符號,終止於"%%"符號,其間則是詞法規則。詞法規則由模式和
動作兩部分組成。模式部分可以由任意的正則表達式組成,動作部分是由c語言語句組
成,這些語句用來對所匹配的模式進行相應處理。需要注意的是,lex將識別出來的單
詞存放在yytext[]字元數據中,因此該數組的內容就代表了所識別出來的單詞的內容。
類似yytext這些預定義的變數函數會隨著後面內容展開一一介紹。動作部分如果有多
行執行語句,也可以用{}括起來。
%%
title showtitle();
[\n] linenum++;
[0-9]+ printf("Int : %s\n",yytext);
[0-9]*\.[0-9]+ printf("Float : %s\n",yytext);
[a-zA-Z][a-zA-Z0-9]* printf("Var : %s\n",yytext);
[\+\-\*\/\%] printf("Op : %s\n",yytext);
. printf("Unknown : %c\n",yytext[0]);
%%
A.規則部分的正則表達式
規則部分是Lex描述文件中最為復雜的一部分,下面列出一些模式部分的正則表達式字
符含義:
A-Z, 0-9, a-z 構成模式部分的字元和數字。
- 指定范圍。例如:a-z 指從 a 到 z 之間的所有字元。
\ 轉義元字元。用來覆蓋字元在此表達式中定義的特殊意義,
只取字元的本身。

[] 表示一個字元集合。匹配括弧內的任意字元。如果第一個字
符是^那麼它表示否定模式。例如: [abC] 匹配 a, b, 和C
的任何一個。

^ 表示否定。
* 匹配0個或者多個上述模式。
+ 匹配1個或者多個上述模式。
? 匹配0個或1個上述模式。
$ 作為模式的最後一個字元時匹配一行的結尾。
{ } 表示一個模式可能出現的次數。 例如: A{1,3} 表示 A 可
能出現1次或3次。[a-z]{5} 表示長度為5的,由a-z組成的
字元。此外,還可以表示預定義的變數。

. 匹配任意字元,除了 \n。
( ) 將一系列常規表達式分組。如:{Letter}({Letter}|{Digit})*
| 表達式間的邏輯或。
"一些符號" 字元的字面含義。元字元具有。如:"*" 相當於 [\*]。
/ 向前匹配。如果在匹配的模式中的"/"後跟有後續表達式,
只匹配模版中"/"前面的部分。如:模式為 ABC/D 輸入 ABCD,
時ABC會匹配ABC/D,而D會匹配相應的模式。輸入ABCE的話,
ABCE就不會去匹配ABC/D。

B.規則部分的優先順序

規則部分具有優先順序的概念,先舉個簡單的例子:

%{
#include "stdio.h"
%}
%%
[\n] ;
A {printf("ONE\n");};
AA {printf("TWO\n");};
AAAA {printf("THREE\n");};
%%
此時,如果輸入內容:
[root@localhost liweitest]# cat file1.txt
AAAAAAA
[root@localhost liweitest]# ./parser < file1.txt
THREE
TWO
ONE
Lex分析詞法時,是逐個字元進行讀取,自上而下進行規則匹配的,讀取到第一個A字元
時,遍歷後發現三個規則皆匹配成功,Lex會繼續分析下去,讀至第五個字元時,發現
"AAAA"只有一個規則可用,即按行為進行處理,以此類推。可見Lex會選擇最長的字元
匹配規則。
如果將規則
AAAA {printf("THREE\n");};
改為
AAAAA {printf("THREE\n");};
./parser < file1.txt 輸出結果為:
THREE
TWO

再來一個特殊的例子:
%%
title showtitle();
[a-zA-Z][a-zA-Z0-9]* printf("Var : %s\n",yytext);
%%
並輸入title,Lex解析完後發現,仍然存在兩個規則,這時Lex只會選擇第一個規則,下面
的則被忽略的。這里就體現了Lex的順序優先順序。把這個例子稍微改一下:
%%
[a-zA-Z][a-zA-Z0-9]* printf("Var : %s\n",yytext);
title showtitle();
%%
Lex編譯時會提示:warning, rule cannot be matched.這時處理title字元時,匹配
到第一個規則後,第二個規則就無效了。
再把剛才第一個例子修改下,加深下印象!
%{
#include "stdio.h"
%}
%%
[\n] ;
A {printf("ONE\n");};
AA {printf("TWO\n");};
AAAA {printf("THREE\n");};
AAAA {printf("Cannot be executed!");};
./parser < file1.txt 顯示效果是一樣的,最後一項規則肯定是會忽略掉的。

C.規則部分的使用變數
且看下面示例:
%{
#include "stdio.h"
int linenum;
%}
int [0-9]+
float [0-9]*\.[0-9]+
%%
{int} printf("Int : %s\n",yytext);
{float} printf("Float : %s\n",yytext);
. printf("Unknown : %c\n",yytext[0]);
%%
在%}和%%之間,加入了一些類似變數的東西,注意是沒有;的,這表示int,float分
別代指特定的含義,在兩個%%之間,可以通過{int}{float}進行直接引用,簡化模
式定義。

(3) 用戶子程序部分
最後一個%%後面的內容是用戶子程序部分,可以包含用C語言編寫的子程序,而這些子
程序可以用在前面的動作中,這樣就可以達到簡化編程的目的。這里需要注意的是,
當編譯時不帶-ll選項時,是必須加入main函數和yywrap(yywrap將下後面說明)。如:
...
%%
showtitle()
{
printf("----- Lex Example -----\n");
}
int main()
{
linenum=0;
yylex(); /* 進行Lex分析 */
printf("\nLine Count: %d\n",linenum);
return 0;
}
int yywrap()
{
return 1;
}

三.Lex(Lexical Analyzar) 一些的內部變數和函數
內部預定義變數:
yytext char * 當前匹配的字元串
yyleng int 當前匹配的字元串長度
yyin FILE * lex當前的解析文件,默認為標准輸出
yyout FILE * lex解析後的輸出文件,默認為標准輸入
yylineno int 當前的行數信息
內部預定義宏:
ECHO #define ECHO fwrite(yytext, yyleng, 1, yyout) 也是未匹配字元的
默認動作

內部預定義的函數:
int yylex(void) 調用Lex進行詞法分析
int yywrap(void) 在文件(或輸入)的末尾調用。如果函數的返回值是1,就停止解
析。 因此它可以用來解析多個文件。代碼可以寫在第三段,這
樣可以解析多個文件。 方法是使用 yyin 文件指針指向不同的
文件,直到所有的文件都被解析。最後,yywrap() 可以返回1
來表示解析的結束。

lex和flex都是解析Lex文件的工具,用法相近,flex意為fast lexical analyzer generator。
可以看成lex的升級版本。

相關更多內容就需要參考flex的man手冊了,十分詳盡。

四.關於Lex的一些綜述
Lex其實就是詞法分析器,通過配置文件*.l,依據正則表達式逐字元去順序解析文件,
並動態更新內存的數據解析狀態。不過Lex只有狀態和狀態轉換能力。因為它沒有堆棧,
它不適合用於剖析外殼結構。而yacc增加了一個堆棧,並且能夠輕易處理像括弧這樣的
結構。Lex善長於模式匹配,如果有更多的運算要求就需要yacc了。

Ⅳ c語言 為什麼主函數調用函數average的實參是數組名score,而不是整個數組

如果一個函數以一維數組為參數,我們可以這樣聲明這個函數
void func(int* a) ;void func(int a[]) ;void func(int a[3]) ;

實際上,這三種形式是等價的,在使用數組做參數時,編譯器會自動將數組名轉換為指向數組第一個元素的指針,為什麼呢?這要從參數的傳遞方式說起,參數有三種傳遞方式,按值傳遞,按指針傳遞,按引用傳遞,分別如下
void Test(int a) ;void Test(int* a) ;void Test(int& a) ;

第一種方式傳遞的是a的一個副本
第二種方式傳遞的是指向a的指針的一個副本
第三種方式傳遞的是指向a的引用的一個副本
既然都是副本,那麼就存在拷貝到過程,但是,數組是不能直接拷貝的,也就是不能像下面這樣
int a[3] = {1, 2, 3} ;int b[](a) ; // errorint b[3] ;b = a ; // error
不能用一個數組初始化另一個數組,也不能將一個數組直接賦值給另外一個數組,如果想復制數組,唯一的辦法就是逐個元素復制。int a[3] = {1, 2, 3} ;int b[3] ;for (int i = 0; i < 3; ++i){ b[i] = a[i] ;}

既然數組不能拷貝,那麼參數該如何傳遞呢?於是編譯器就將數組名轉換成了指向第一個元素的指針,指凱跡和針是可以拷貝的。但是這也引發了另外一個問題。我們無法只通過數組名得知數組元素的個數。看下面的代碼
void Test(int a[3]){ for (int i = 0; i < 5; ++i) { cout << a[i] << endl ; }}

明明只傳遞了三個元素的數組,為什麼輸出5個元素?前面已經說了,數組被轉換成了指向第一個元素的指針,所以上面的代碼和下面的相同
void Test(int* a) //我只知道a是個指針,跟本不知道a指向多少個元素{ for (int i = 0; i < 5; ++i) { cout << a[i] << endl ; }}

編譯器根本不知奧數組a有多少個元素,它甚至不知道a是數組!如何解決呢,一種辦法是再加一個參數,指定元素個數
void Test(int* a, int n){ for (int i = 0; i < n; ++i) { cout << a[i] << endl ; }}

另外一種辦法是州祥傳遞數組的引用,這才是本文的重點,唉,前面這么多廢話:(
void Test(int (&a)[3]){ for (int i = 0; i < 3; ++i) { cout << a[i] << endl ; }}

這樣寫數組a就不會被轉換為指針了,而且有了元素個數的信息,調用的時候,也必須傳遞一個含有3個元素的數組
int a[3] = {1, 2, 3} ;Test(a) ; // okint b[1] = {1} ;Test(b) ; // error, can not convert parameter a from int[1] to int(&)[3]

1、對於一維數組來說,數組作為函數參數傳遞,實際上傳遞了一個指向數組的指針,在c編譯器中,當數組名作為函盯盯數參數時,在函數體內數組名自動退化為指針。此時調用函數時,相當於傳址,而不是傳值,會改變數組元素的值。
例如:void fun(int a[]); 若在fun函數中有a[i]++;等語句,那麼對應的數組元素會被修改,調用時直接用fun(a);即可。
2、對於高維數組來說,可以用二維數組名作為實參或者形參,在被調用函數中對形參數組定義時可以指定所有維數的大小,也可以省略第一維的大小說明,如:
void fun(int array[3][10]);
void fun(int array[][10]);
二者都是合法而且等價,但是不能把第二維或者更高維的大小省略,如下面的定義是不合法的:
void fun(int array[][]);
因為從實參傳遞來的是數組的起始地址,在內存中按數組排列規則存放(按行存放),而並不區分行和列,如果在形參中不說明列數,則系統無法決定應為多少行多少列,不能只指定一維而不指定第二維,下面寫法是錯誤的:
void fun(int array[3][]);
實參數組維數可以大於形參數組,例如形參數組定義為:
void fun(int array[3][10]);
而實參數組定義為:
int array[5][10];
這時形參數組只取實參數組的一部分,其餘部分不起作用。
可以看到,將二維數組當作參數的時候,必須指明所有維數大小或者省略第一維的,但是不能省略第二維或者更高維的大小,這是由編譯器原理限制的。學編譯原理的時候應該 知道編譯器是這樣處理數組的:
對於數組 int p[m][n];
如果要取p[i][j]的值(i>=0 && i<m && 0<=j && j < n),編譯器是這樣定址的,它的地址為:
p + i*n + j;
從以上可以看出,如果我們省略了第二維或者更高維的大小,編譯器將不知道如何正確的定址,即這里的n值是在形參定義的時候就要明確知道的。但是我們在編寫程序的時候卻需要用到各個維數都不固定的二維數組 作為參數,這就難辦了,編譯器不能識別阿,怎麼辦呢?不要著急,編譯器雖然不能識別,但是我們完全可以不把它當作一個二維數組,而是把它當作一個普通的指針,再另外加上兩個參數指明各個維數,然後我們為二維數組手工定址,這樣就達到了將二維數組作為函數的參數傳遞的目的,根據這個思想,我們可以把維數固定 的參數變為維數隨即的參數,例如:
void fun(int array[3][10]);
void fun(int array[][10]);
變為:
void fun(int **array, int m, int n);
在轉變後的函數中,array[i][j]這樣的式子是不對的(不信,大家可以試一下),因為編譯器不能正確的為它定址,所以我們需要模仿編譯器的行為把array[i][j]這樣的式子手工轉變為:
*(*array + n*i + j);
在調用這樣的函數的時候,需要注意一下,如下面的例子:
int a[3][3] = { {1, 1, 1}, {2, 2, 2}, {3, 3, 3}};
fun(a, 3, 3);
根據不同編譯器不同的設置,可能出現warning 或者error,可以進行強制轉換如下調用:
fun((int**)a, 3, 3);

熱點內容
linuxip腳本 發布:2024-12-25 14:04:00 瀏覽:416
c語言最短路徑 發布:2024-12-25 14:03:52 瀏覽:622
c語言考點 發布:2024-12-25 14:03:13 瀏覽:613
想換個安卓手機什麼機子好 發布:2024-12-25 14:01:38 瀏覽:846
python不是內部或外部 發布:2024-12-25 13:36:14 瀏覽:638
如何看計算機配置信息 發布:2024-12-25 13:18:59 瀏覽:850
安卓手機如何轉到apple手機 發布:2024-12-25 13:06:42 瀏覽:621
linux盤符 發布:2024-12-25 13:05:56 瀏覽:441
資料庫表大小 發布:2024-12-25 13:05:49 瀏覽:209
oppo手機在哪裡找到身份證密碼 發布:2024-12-25 13:02:24 瀏覽:985