基因密碼編譯生物
❶ 遺傳密碼的破譯的遺傳密碼的破譯過程
基因密碼的破譯是六十年代分子生物學最輝煌的成就。先後經歷了五十年代的數學推理階段和1961-1965年的實驗研究階段。 1954年,物理學家George Gamov根據在DNA中存在四種核苷酸,在蛋白質中存在二十種氨基酸的對應關系,做出如下數學推理:如果每一個核苷酸為一個氨基酸編碼,只能決定四種氨基酸(41=4);如果每二個核苷酸為一個氨基酸編碼,可決定16種氨基酸(42=16)。上述二種情況編碼的氨基酸數小於20種氨基酸,顯然是不可能的。那麼如果三個核苷酸為一個氨基酸編碼的,可編64種氨基酸(43=64);若四個核苷酸編碼一個氨基酸,可編碼256種氨基酸(44=256),以此類推。Gamov認為只有4^3=64這種關系是理想的,因為在有四種核苷酸條件下,64是能滿足於20種氨基酸編碼的最小數。而44=256以上。雖能保證20種氨基酸編碼,但不符合生物體在億萬年進化過程中形成的和遵循的經濟原則,因此認為四個以上核苷酸決定一個氨基酸也是不可能的。1961年,Brenner和Grick根據DNA鏈與蛋白質鏈的共線性(colinearity),首先肯定了三個核苷酸的推理。隨後的實驗研究證明上述假想是正確的。
1962年,克里克用T4噬菌體侵染大腸桿菌,發現蛋白質中的氨基酸順序是由相鄰三個核苷酸為一組遺傳密碼來決定的。由於三個核苷酸為一個信息單位,有43=64種組合,足夠20種氨基酸用了
破譯密碼的競賽中,美國的尼倫伯格博士走在前面。他用嚴密的科學推理對蛋白質合成的情況進行分析。既然核苷酸的排列順序與氨基酸存在對應關系,那麼只要知道RNA鏈上鹼基序列,然後由這種鏈去合成蛋白質,不就能知道它們的密碼了嗎?用僅僅含有單一鹼基的尿嘧啶(U),做試管內合成蛋白質的研究。合成蛋白質必須將DNA上的遺傳信息轉錄到RNA上,而RNA的鹼基與DNA稍有不同,一般是有UCGA4種(DNA中是TCGA)。這個實驗只用了含有單一鹼基U的特殊RNA。這樣,就得到了只有UUU編碼的RNA。把這種RNA放到和細胞內相似的溶液里,如果上述觀點正確,應該得到由單一一種氨基酸組成的蛋白質。這樣合成的蛋白質中,只含有苯丙氨酸。於是,人們了解了第一個蛋白質的密碼:UUU對應苯丙氨酸。隨後,又有人用U—G交錯排列合成了半胱氨酸—纈氨酸—半胱氨酸的蛋白質,從而確定了UGU為半胱氨酸的密碼,而GUG為纈氨酸的密碼。這樣,人們不僅證明了遺傳密碼是由3個鹼基排列組成,而且不斷地找出了其他氨基酸的編碼。
進一步研究發現,不論生物簡單到只一個細胞,還是復雜到與人一樣高等,他的遺傳密碼是一樣的。也就是說,一切生物共用一套遺傳密碼。
❷ 如何通過科學方法強制打破生物間的生殖隔離
可以通過基因編碼強制打破生物間的生殖隔離。破解各個物種的基因密碼,然後類似於編程的形式進行編碼,就類似於打破生殖隔離創造新的物種了吧,就像大規模的轉基因,轉基因少可以認為還是同一個物種,大量的轉基因就可能變成新的物種了。
生殖隔離:
生殖隔離指由於各方面的原因,使親緣關系接近的類群之間在自然條件下不交配,或者即使能交配也不能產生後代或不能產生可育性後代的隔離機制,若隔離發生在受精以前,就稱為受精前的生殖隔離。對真核生物來說, 無論它們在形態上的差別有多大, 生殖隔離(reproctive isolation)應該是兩個群體能否真正分化成不同物種的關鍵, 這種隔離機制可以是地理的、行為的或其他方式。