編譯裝載
㈠ c++程序編譯後自動生成的文件有什麼用,分別解釋下
1, PCH文件
預編譯頭文件(一般擴展名為.PCH),是把一個工程中較穩定的代碼預先編譯好放在一個文件(.PCH)里.這些預先編譯好的代碼可以是任何的C/C++代碼--甚至可以是inline函數,只它們在整個工程中是較為穩定的,即在工程開發過程中不會經常被修改的代碼.
為什麼需要預編譯頭文件?一言以蔽之:提高編譯速度.一般地,編譯器以文件為單位編譯,如果修改了一工程中的一個文件則所有文件都要重新編譯,包括頭文件里的所有東西(eg.Macro宏,Preprocessor預處理),而VC程序中,這些頭文件中所包括的東西往往是非常大的,編譯之將占很長的時間.但它們又不常被修改,是較穩定的,為單獨的一個小文件而重新編譯整個工程的所有文件導致編譯效率下降,因此引入了.PCH文件.
如何使用預編譯頭文件以提高編譯速度?要使用預編譯頭文件,必須指定一個頭文件(.H),它包含我們不會經常修改的代碼和其他的頭文件,然後用這個頭文件(.H)來生成一個預編譯頭文件(.PCH)VC默認的頭文件就是StdAfx.h,因為頭文件是不能編譯的,所以我們還需要一個.CPP文件來作橋梁,VC默認的文件為StdAfx.cpp,這個文件里只有一句代碼就是:#include "StdAfx.h".接下來要用它生成.PCH文件,涉及到幾個重要的預編譯指令:/Yu,/Yc,/Yx,/Fp.簡單地說,/Yc是用來生成.PCH文件的編譯開關.在Project->setting->C/C++的Category里的Precompiled Header,然後在左邊的樹形視圖中選擇用來編譯生成.PCH文件的.CPP文件(默認即StdAfx.cpp)你就可以看到/Yc這個開關,它表示這個文件編譯了以後是否生成.PCH文件(可能/Yc的c表示create)./Fp指令指定生成的.PCH文件的名字及路徑(可能/Fp的p代表path)./Yu的u即use使用,工程中只要包括了.H文件的文件都會有這個/Yu指令.如果選擇自動Automatic...的話則原來為/Yc的地方就換成了/Yx指令.如果選擇自動,則每次編譯時編譯器會看以前有沒有生成過.PCH文件,有則不現生成否則就再次編譯產生.PCH文件.
注意:
A,實際上,由Appzard項目向導生成的默認的頭文件及CPP文件StdAfx.h和StdAfx.cpp可以是任何名字的.原因很簡單.但如果你要這樣做就要記得修改相應的Project->setting...下的幾個預編譯指令(/Yc,/Yu,/Yx,/Fp)的參數.
B.在任何一個包括了將要預編譯的頭文件而使用了.PCH文件的工程文件的開頭,一定必須要是在最開頭,你要包含那個指定生成.PCH文件的.H文件(通過.CPP文件包括,默認為StdAfx.cpp),如果沒包括將產生我最開頭產生的錯誤.如果不是在最開頭包括將產生讓你意想不到的莫名其妙錯誤,如若不信,盍為試之?
C.預編譯文件.PCH生成之很耗時間,而且生成之後它也很占磁碟空間,常在5-6M,注意項目完成之後及時清理無用的.PCH文件以節約磁碟空間.
D.如果丟了或刪了.PCH文件而以後要再修改工程文件時,可將指定的/Yc的.CPP文件(默認為StdAfx.cpp)重新編譯一次即可再次生成.PCH文件,不用傻傻的按F7或Rebuild All
2, NCB文件
.ncb 無編譯瀏覽文件(no compile browser)。當自動完成功能出問題時可以刪除此文件。build後會自動生成
3, OBJ文件
目標文件,一般是程序編譯後的二進制文件,再通過鏈接器和資源文件鏈接就成exe文件了。
OBJ只給出了程序的相對地址,而EXE是絕對地址。
4, PDB文件
程序資料庫 (PDB) 文件保存著調試和項目狀態信息,使用這些信息可以對程序的調試配置進行增量鏈接。當以 /ZI 或 /Zi(用於 C/C++)生成時,將創建一個 PDB 文件。
在 Visual C++ 中,/Fd 選項用於命名由編譯器創建的PDB 文件。當使用向導在Visual Studio 中創建項目時,/Fd 選項被設置為創建一個名為 project.PDB 的 PDB。
如果使用生成文件創建 C/C++ 應用程序,並指定 /ZI 或 /Zi 而不指定 /Fd 時,則最終將生成兩個 PDB 文件:
*VC80.PDB (更籠統地說就是 VCx0.PDB,其中 x 表示 Visual C++ 的版本。)該文件存儲各個 OBJ 文件的所有調試信息並與項目生成文件駐留在同一個目錄中。
*project.PDB 該文件存儲 .exe 文件的所有調試信息。對於C/C++,它駐留在 \debug 子目錄中。
每當創建 OBJ 文件時,C/C++ 編譯器都將調試信息合並到 VCx0.PDB 中。插入的信息包括類型信息,但不包括函數定義等符號信息。因此,即使每個源文件都包含公共頭文件(如 <windows.h>),這些頭文件中的 typedef 也只存儲一次,而不是在每個 OBJ 文件中都存在。
鏈接器將創建 project.PDB,它包含項目的 EXE 文件的調試信息。project.PDB文件包含完整的調試信息(包括函數原型),而不僅僅是在 VCx0.PDB 中找到的類型信息。這兩個 PDB 文件都允許增量更新。鏈接器還在其創建的 .exe 或 .dll 文件中嵌入 .pdb 文件的路徑。
Visual Studio 調試器使用 EXE 或 DLL 文件中的PDB 路徑查找 project.PDB 文件。如果調試器在該位置無法找到 PDB 文件或者如果路徑無效(例如,如果項目被移動到了另一台計算機上),調試器將搜索包含 EXE 的路徑,即在「選項」對話框(「調試」文件夾,「符號」節點)中指定的符號路徑。調試器不會載入與所調試的二進制不匹配的 PDB。
5, ILK文件
在增量鏈接時,LINK 更新在第一次增量鏈接期間創建的 .ilk 狀態文件。該文件和 .exe文件或 .dll 文件具有相同的基名稱,並具有擴展名 .ilk。在後面的增量鏈接期間,LINK 更新 .ilk 文件。如果缺少 .ilk 文件,則 LINK 執行完全鏈接並創建新的 .ilk 文件。如果 .ilk 文件無法使用,則 LINK 執行非增量鏈接。有關增量鏈接的詳細信息,請參見漸進式鏈接(/INCREMENTAL) 選項。
6, MAP文件
Windows和linux系統下都有map文件,map文件一般是用來保存符號的地址信息。這里的符號一般是指函數名及變數(局部、全局)。根據這個地址信息,便可以把地址翻譯成相應的符號,很多系統工具、debug方法都要用到這種信息。
(一)一個程序編譯完以後內容會分成兩大類保存,一類是code,一類是data:
(1)code指程序代碼,常存在.text section
(2)data指存程序中聲明的變數,常存在.data section,未初始化的變數會被存在.bss section。
(二)Windows
(1)單個模塊的map文件
在Windows下每一個模塊(dll/exe)對應一個map文件,只需編譯時打開相應的選項即可。
visual studio中方法:右擊工程,選擇Properties,然後選擇 Configuration Properties -Linker - Debugging,將Generate Map File項改成Yes。
編譯後在debug/release目錄里便可以找到與應用程序同名的map文件。
如下為map文件內容:
Timestamp is4b9603e2 (Tue Mar 09 16:16:34 2010) //這個是時間戳,每次編譯都不同,後面符號對應的地址一般也不同。
Preferred loadaddress is 00010000 //這是編譯時的預裝載地址,實際上模塊被載入的地址可能跟這個不同,所以來確定某個地址對應哪個符號信息的時候,還需要知道該模塊載入在內存的真正起始地址,然後根據偏移量來確定。
Start Length Name Class
0001:00000000 001c3950H .text CODE ==》存放程序代碼
0003:000008b8000af67cH .data DATA ==》初始化的變數
0003:000aff40003930b1H .bss DATA ==》未初始化的變數
(2)操作系統總的map文件:不知道有沒有。
(3)mpbin
mpbin是一個反匯編工具,可以輸出exe/dll文件的許多信息。
mpbin /allyourmolename > a.txt 可以把所有的信息保存在一個a.txt中,裡面可以找到時間戳、原debug路徑信息及函數列表等。
如下:
FILE HEADERVALUES
1C2 machine (Thumb)
6 number of sections
49EC0BAE time date stamp Mon Apr 2013:44:14 2009 //時間戳
0 file pointer to symbol table
0 number of symbols
E0 size of optional header
2102 characteristics
Executable
32 bit word machine
DLL
OPTIONAL HEADERVALUES
10B magic # (PE32)
9.00 linker version
53E00 size of code
76A00size of initialized data
0 size of uninitialized data
502ACentry point (100502AC)
1000 base of code
55000 base of data
10000000 image base (10000000 to100CDFFF)
1000 section alignment
200 file alignment
5.01 operating system version
0.00 image version
5.01 subsystem version
0 Win32 version
CE000 size of image
400 size of headers
其中 10000000 image base (10000000 to 100CDFFF)是重要的信息,與map file中的 Preferred load address is10000000 意義相同。
DebugDirectories
Time Type Size RVA Pointer
-------- ------ -------- -------- --------
49EC0BAE cv 81 000020FC CFC Format: RSDS, {A5C699F0-C26D-427E-BC54-3504731BA9B8}, 1,d:\Projects\Final\MyUsbToPc_CPL\MyUsbToPc\Windows Mobile 6 Professional SDK(ARMV4I)\Debug\MyUsbToPc.pdb //原編譯路徑
Begin End Prolog Excpt 32bit Fixup 【Function Name】
0000000010001000 10001040 10001010 N Y Y DllMain
0000000810001040 10001064 10001050 N Y Y ?InitApplet@@YAHPAUHWND__@@@Z (int __cdecl InitApplet(struct HWND__*))
0000001010001064 10001068 10001064 N Y Y ?TermApplet@@YAXXZ (void __cdecl TermApplet(void))
0000001810001068 100013DC 10001078 N Y Y CPlApplet
00000020 1000141C 100014B4 10001420 N Y Y _DllMainCRTStartup
00000028100014B4 100014BC 100014B4 N Y Y GetCurrentProcess
00000030100014BC 100014F0 100014C0 N Y Y
00000038 100014F0 1000155C 100014F4 N Y Y _cinit
00000040 1000155C 10001660 10001560 N Y Y
0000004810001660 10001678 10001664 N Y Y exit
0000005010001678 10001690 1000167C N Y Y _exit
0000005810001690 100016AC10001694 N Y Y _cexit
00000060 100016AC 100016F8 100016B0 N Y Y _c_exit
begin欄對應的地址與map里的地址是一致的,非常類似於map文件。
【注意:很多exe或dll在編譯時時將此信息隱藏的,Function Name會變成空的】
(三)Linux
(1)單個模塊的map文件
暫還不清楚,大家知道的請告知。
(2)操作系統總的map文件
linux系統編譯Image後會生成一個system.map,裡面存了被編譯進內核的符號信息,不同次的編譯生成的system.map會有差異。
因為是操作系統的符號信息,裝載的地址都是固定的,所以不像windows單個模塊那樣靠偏移量定位,直接通過地址就可以直接找到對應的符號。
其內容的重要的幾個符號如下:
_stext//代碼段開始
_etext//代碼段結束
__data_start//初始化的數據開始
_edata//初始化的數據結束
__bss_start//未初始化數據開始
_end//全部結束
Linux相對windows有個很重要的不同是,linux啟動後在proc\kallsyms里也有一份類似Map文件的信息,cat命令可看到其內容,有了這個就可以得到任何一個內核的符號(變數及函數名)的地址信息,而不需要在編譯完內核後特意保存map文件,這真是一個巨大的寶藏。
而且,proc\kallsym的信息比system.map多,在最後會有mole部分的符號信息,這些信息會隨著系統的變化而變化。
(3)nm命令
nm命令用來顯示某個可執行文件的符號信息。符號信息中會包含全局變數(比如下面的xyz)和函數名(比如下面的main),還有一些編譯器插入的符號(比如下面的__data_start,__bss_start)
第二列表示符號的屬性,其中大寫代表global,小寫代表local
Usage: nm[option(s)] [file(s)]
List symbols in[file(s)] (a.out by default).
示例:
nm helo
08049f20 d_DYNAMIC
08049ff4 d_GLOBAL_OFFSET_TABLE_
080484ec R_IO_stdin_used
w _Jv_RegisterClasses
08049f10 d__CTOR_END__
08049f0c d__CTOR_LIST__
08049f18 D__DTOR_END__
08049f14 d__DTOR_LIST__
08048500 r__FRAME_END__
08049f1c d__JCR_END__
08049f1c d__JCR_LIST__
0804a020 A__bss_start
0804a00c D__data_start
080484a0 t __do_global_ctors_aux
08048340 t__do_global_dtors_aux
0804a010 D__dso_handle
w __gmon_start__
0804849a T __i686.get_pc_thunk.bx
08049f0c d__init_array_end
08049f0c d__init_array_start
08048430 T__libc_csu_fini
08048440 T__libc_csu_init
U __libc_start_main@@GLIBC_2.0
0804a020 A _edata
0804a028 A _end
080484cc T _fini
080484e8 R_fp_hw
08048298 T _init
08048310 T_start
0804a020 bcompleted.6635
0804a00c Wdata_start
0804a024 bdtor_idx.6637
080483a0 t frame_mmy
080483c4 T main
U printf@@GLIBC_2.0
0804a014 D x
0804a018 D y
0804a01c D z
helo.c如下:
#include<stdio.h>
int x = 10;
int y = 20;
int z = 30;
extern int__data_start;//這里引用了編譯器插入的符號
int main(void)
{
int *ds = &__data_start;
printf("%p\n", ds);
printf("now x = %d\n", x);
ds+=3;
*ds = 100;
printf("now x = %d\n", x);
}
7, IDB文件
The compiler savesstate information from the first compile in the project』s .IDB file (the default name is project.IDB or VC60.IDBfor files compiled without a project).
The compiler usesthis state information to speed subsequent compiles.
8, SLN文件
Visual Studio.Solution 通過為環境提供對項目、項目項和解決方案項在磁碟上位置的引用,可將它們組織到解決方案中。
㈡ 類的裝載,初始化,實例的創建有何區別啊
javac 把源碼整成位元組碼
java 時,首先把你.class文件裝進內存裡面,這是裝載。
new 一個對象的時候,是個實例化的過程,要先初始化該初始化的數據,static塊的,static的,非static的成員變數,調構造方法 等。
這些呢,都是在運行程序之前乾的事。是JVM乾的事
反射可以進行動態裝載。就是說你不讓JVM干這些事了,你自己來干。道理都是一樣的。
反射不建議多使用,影響效率
㈢ 簡述JAVA程序的編輯編譯和運行過程
Java應用程序的開發周期包括編譯、下載、解釋和執行幾個部分。Java編譯程序將 Java源程序翻譯為JVM可執行代碼--位元組碼。Java將符號引用信息保留在位元組碼中,由解釋器在運行過程中創立內存布局,然後再通過查 表來確定一個方法所在的地址。這樣就有效的保證了Java的可移植性和安全性。
運行JVM位元組碼的工作是由解釋器( java命令 )來完成的。解釋執行過程分三部進行:代碼的裝入、代碼的校驗和代碼的執行。裝入代碼的工作由"類裝載器"(class loader)完成。類裝載器負責裝入運行一個程序需要的所有代碼,這也包括程序代碼中的類所繼承的類和被其調用的類。當類裝載器裝入一個類時,該類被放 在自己的名字空間中。除了通過符號引用自己名字空間以外的類,類之間沒有其他辦法可以影響其他類。在本台計算機上的所有類都在同一地址空間內,而所有從外 部引進的類,都有一個自己獨立的名字空間。這使得本地類通過共享相同的名字空間獲得較高的運行效率,同時又保證它們與從外部引進的類不會相互影響。當裝入 了運行程序需要的所有類後,解釋器便可確定整個可執行程序的內存布局。解釋器為符號引用同特定的地址空間建立對應關系及查詢表。通過在這一階段確定代碼的 內存布局,Java很好地解決了由超類改變而使子類崩潰的問題,同時也防止了代碼對地址的非法訪問。
㈣ 簡述JAVA程序的編輯編譯和運行過程
第一步(編譯): 創建完源文件之後,程序會先被編譯為.class文件。Java編譯一個類時,如果這個類所依賴的類還沒有被編譯,編譯器就會先編譯這個被依賴的類,然後引用,否則直接引用,這個有點象make。
如果java編譯器在指定目錄下找不到該類所其依賴的類的.class文件或者.java源文件的話,編譯器話報「cant find symbol」的錯誤。
第二步(運行):java類運行的過程大概可分為兩個過程:1、類的載入 2、類的執行。需要說明的是:JVM主要在程序第一次主動使用類的時候,才會去載入該類。也就是說,JVM並不是在一開始就把一個程序就所有的類都載入到內存中,而是到不得不用的時候才把它載入進來,而且只載入一次。
特別說明:java類中所有public和protected的實例方法都採用動態綁定機制,所有私有方法、靜態方法、構造器及初始化方法<clinit>都是採用靜態綁定機制。而使用動態綁定機制的時候會用到方法表,靜態綁定時並不會用到。
(4)編譯裝載擴展閱讀:
Java整個編譯以及運行的過程相當繁瑣,本文通過一個簡單的程序來簡單的說明整個流程。
Java代碼編譯:是由Java源碼編譯器來完成;
Java位元組碼的執行:是由JVM執行引擎來完成
Java程序從源文件創建到程序運行要經過兩大步驟:
1、源文件由編譯器編譯成位元組碼(ByteCode)
2、位元組碼由java虛擬機解釋運行。因為java程序既要編譯同時也要經過JVM的解釋運行,所以說Java被稱為半解釋語言( "semi-interpreted" language)。
㈤ 簡述java語言的運行機制
簡單來說Java程序的運行機制
編寫、編譯、運行三個步驟。
運行機制 主要是指
編譯、運行的過程
1、編譯
Java編譯器對源文件進行錯誤排查的過程,編譯後將生成後綴名為.class的位元組碼文件。好讓JVM(java虛擬機)里的解釋器可以正常讀取。
2、運行
三步代碼的裝入、代碼的校驗和代碼的執行
2.1 、代碼的裝入
JVM控制解釋器中的「類裝載器」去讀取和裝載程序所需的類(class的位元組碼)。然後解釋器開始建立類與類之間的關系。
2.2、代碼的校驗
位元組碼校驗器進行檢查:校驗器可發現操作數棧溢出,非法數據類型轉化等多種錯誤。
2.3、代碼的執行
執行也分兩種情況
即時編譯方式:解釋器先將位元組碼編譯成機器碼,然後再執行該機器碼。
解釋執行方式:解釋器通過每次解釋並執行一小段代碼來完成Java位元組碼程 序的所有操作。
通常採用的是第二種方法。由於JVM規格描述具有足夠的靈活性,這使得將位元組碼翻譯為機器代碼的工作
本回答由電腦網路分類達人 化曉峰推薦
㈥ java如何實現一次編譯到處運行
JAVA之所以能實現一次編譯,到處運行,是因為JAVA在每個系統平台上都有JAVA虛擬機(JVM),JAVA編譯的中間文件class是由JAVA虛擬機在運行時動態轉換為對應平台的機器代碼.
Java是一種可以撰寫跨平台應用程序的面向對象的程序設計語言。Java 技術具有卓越的通用性、高效性、平台移植性和安全性,廣泛應用於PC、數據中心、游戲控制台、科學超級計算機、行動電話和互聯網,同時擁有全球最大的開發者專業社群。
Java 由四方面組成:
Java編程語言,即語法。
Java文件格式,即各種文件夾、文件的後綴。
Java虛擬機(JVM),即處理*.class文件的解釋器。
Java應用程序介面(Java API)。