量化交易編程
『壹』 python 量化交易 可靠嗎
可不可靠得看你編寫的程序靠不靠譜以及策略的優劣,python只是一門極易入門的編程語言,適合做金融相關的自動化,都是一套功夫,耍的人不同效果也不一樣的希望可以幫到你
『貳』 使用python做量化交易策略測試和回驗,有哪些比較成熟一些的庫
numpy
介紹:一個用python實現的科學計算包。包括:1、一個強大的N維數組對象Array;2、比較成熟的(廣播)函數庫;3、用於整合C/C++和Fortran代碼的工具包;4、實用的線性代數、傅里葉變換和隨機數生成函數。numpy和稀疏矩陣運算包scipy配合使用更加方便。
scipy
介紹:SciPy是一款方便、易於使用、專為科學和工程設計的Python工具包。它包括統計、優化、線性代數、傅里葉變換、信號和圖像處理、常微分方程求解等等。
pandas
介紹:Python Data Analysis Library 或 pandas 是基於NumPy 的一種工具,該工具是為了解決數據分析任務而創建的。Pandas 納入了大量庫和一些標準的數據模型,提供了高效地操作大型數據集所需的工具。pandas提供了大量能使我們快速便捷地處理數據的函數和方法。你很快就會發現,它是使Python成為強大而高效的數據分析環境的重要因素之一。
quantdsl
介紹: quantdsl包是Quant DSL語法在Python中的一個實現。Quant DSL 是財務定量分析領域專用語言,也是對衍生工具進行建模的功能編程語言。Quant DSL封裝了金融和交易中使用的模型(比如市場動態模型、最小二乘法、蒙特卡羅方法、貨幣的時間價值)。
statistics
介紹:python內建的統計庫,該庫提供用於計算數值數據的數學統計的功能。
PyQL
介紹: PyQL構建在Cython之上,並在QuantLib之上創建一個很淺的Pythonic層,是對QuantLib的一個包裝,並利用Cython更好的性能。
『叄』 想用python量化金融,需要掌握python哪些
urllib, urllib2, urlparse, BeautifulSoup, mechanize, cookielib 等等啦這些庫的掌握並不難,網路爬蟲難的是你要自己設計壓力控制演算法,還有你的解析演算法,還有圖的遍歷演算法等。
『肆』 量化交易編程很掙錢嗎
量化交易他其實也被稱為演算法交易,是一種嚴格按照計算機演算法程序給出的交易決策進行交易的方法。它用先進的數學模型代替人為的主觀判斷,用計算機技術選擇各種“高概率”事件,從海量歷史數據中帶來超額回報,制定策略,大大降低了投資者情緒波動的影響,避免了在市場極度火熱或悲觀的情況下做出非理性的投資決策,很容易將定量交易與技術分析混淆。
事實上,定量交易的內容要豐富得多,許多定量交易系統在建模和計算時使用基礎數據,如估值、市場價值、現金流等,其他演算法將新聞作為變數計算。技術分析基本上只需要交易對象的數量和價格數據,具體表現為“三多”,首先,有多層次模型,包括三個層次:資產配置、行業選擇和特定資產選擇。
『伍』 期貨量化交易編程怎麼弄
方法:1、前提是你必須有自己的期貨交易賬戶,每個期貨公司都可以開,現在不用出門就可以用手機在線開戶。
2、其次,要選擇合適的交易軟體。其中交易開拓者的軟體是最好編程的,很多交易團隊基本都在用這個軟體。確定賬戶和交易軟體。
3、剩下的就是如何用編程語言編寫策略,並將其輸入交易軟體。編程其實並不難。在程序化交易中,程序化只佔程序化交易的30%。好的編程可以簡化代碼,提高運行速度,增加交易策略的多樣性和完整性,實現一些復雜的策略。
4、如果沒有這方面的編程能力,可以參加期貨交易的相關培訓課程。另外70%主要是策略、倉位設置、交易品種選擇、程序化交易心態控制、網路設置等的組合管理。
拓展資料:
1、 戰略的確定。一個成功的量化交易系統的開發過程必須是恰當的。如何找到一個成功的量化交易策略,是構建量化交易體系的基礎。無論是基本面還是技術面,都可以用量化的方法進行分析,進而得出量化的交易策略。比如,從根本上說,GDP的增長和貨幣流通量的增加可以用定量的方法來分析和描述。技術上,移動平均線和指數smma是物理和化學策略思想的來源。
2、 經典理論。很多量化投資策略思路來源於傳統經典投資理論,比如經典商品期貨技術分析主要包括技術分析的理論基礎、道指理論、圖表介紹、趨勢基本概念、主要反轉形態、持續形態、交易量和倉位興趣、長期圖表和商品指數、移動平均線、擺動指數和相反意見、盤中點圖、三點轉向和優化點圖、艾略特波浪理論、時間周期等等。這些經典理論有的有具體的指標和具體的應用理論,有的只有理論,需要根據理論生成具體的應用指標來完成策略的測試。因此,經典投資理論可以通過量化思維將理論中的具體邏輯量化為指標或事件形成交易信號,通過信號優化檢驗實現經典理論的投資思路。這種方式可以有效實現經典理論,同時也可以從原有的經典理論中衍生出周邊的投資方法,是量化策略發展初期的主流模式。
3、 邏輯推理。邏輯學的戰略思維大多來源於宏觀基礎信息,其量化戰略思維是通過對宏觀信息的量化處理,梳理出符合宏觀基礎信息的量化模型。典型的量化策略包括行業輪動量化策略、市場情緒輪動量化策略、上下游供需量化策略等。這種策略思路來源非常廣泛,數據一般不規范,很難形成標准。目前,許多對沖基金都有類似的想法來生成量化策略產品。
4、 總結經驗。經驗總結是量化戰略思想的另一個主要來源。在使用量化策略交易之前,市場上有大量經驗豐富的投資者,其中許多人在長期穩定回報方面表現突出。因此,他們對市場的看法和交易思路成為了量化策略開發者的模仿對象,有經驗的交易者也願意量化一些他們覺得相對固化、能夠獲得穩定回報的交易策略,最終可以用機器自動交易,只監控交易。這可以大大減少交易中消耗的能量。在這個前提下,出現了一個與經驗豐富的交易者合作的量化策略團隊。
操作環境:iPad第九代15.1 交易開拓者4.5.2