c編譯包括幾個部分
編譯:將源程序轉換為擴展名為.obj的二進制代碼
連接:將obj文件進行連接,加入庫函數等生成可執行文件
運行:執行可執行文件,有錯返回修改,無錯結束
② c語言程序編譯過程包括哪四個
C語言編譯過程分成四個步驟:
1,由.c文件到.i文件,這個過程叫預處理
2,由.i文件到.s文件,這個過程叫編譯
3,由.s文件到.o文件,這個過程叫匯編
4,由.o文件到可執行文件,這個過程叫鏈接
用gcc查看預處理過程(假設源文件叫hello.c)
gcc -o hello.i hello.c -E
然後用 vi hello.i 即可查看生成的預處理文件
按ESC 輸入:$ 跳到預處理文件 可看到hello.c源碼
宏的本質:預處理階段的單純的字元串替換
預處理階段,不考慮C語法
③ 一個完整的單片機c語言程序包含哪幾個部分
個人覺得,一個完整C程序至少應該包含頭文件、初始化、主程序四個部分,頭文件是程序編譯預處理的重要組成部分,缺了它就無法生成目標代碼;初始化部分包含變數初始化和埠初始化;主程序是一個C程序的核心代碼,由此執行或調用一些具有特定功能的函數模塊以完成程序的預設功能。
④ C語言代碼組成 - BSS、Data、Stack、Heap、Code、Const
一段C語言經過編譯連接後,成為一段可以運行的代碼,可運行的代碼可以分為以下四個部分組成:全局變數/靜態變數區、堆、棧、代碼區。其中全局變數/靜態變數區又分為未初始化變數區和初始化變數區,代碼區又分為代碼和常量區。即匯總下來,代碼可以分為6部分組成,包括:BSS區(未初始化的全局變數/靜態變數區)、Data區(實始化的全局變數區)、Stack區(棧區)、heap區(堆區)、Code區(代碼區)、const區(常量區)。
一、BSS區和Data區
C語言編程中定義的全局變數、靜態局部變數,就是分配在全局變數/靜態變數區域,但是為什麼又要分為BSS區域和Data區域呢?其實我們在定義全局或者靜態變數區,有時我會對它賦初始值,有的又不會賦初始化,比如我們定義的全局變數,初始化的賦值,是怎麼樣寫到變數區域中的,我們定義的靜態局部變數,在定義時初始化後,為什麼後面函數被調用,又不會再初始化呢?這個局部靜態變數是怎麼樣實始化的,什麼時候初始化的?
如果分析編譯後的匯編代碼,就會發現在代碼運行起來後,會有一段給變數賦值的指令,這一段代碼,不是我們C代碼對應的匯編,而是C編譯器生成的匯編譯代碼,這段代碼的作用就是給初始化了的靜態變數和全局變數進行初始化。這也是為什麼全局/靜態變數區域,要分BSS和Data的原因。
二、Stack區
棧是一種先進後出的數據結構,這種數據結構正好完美的匹配函數調用時的模型過程,比如函數f(a)在運行過程中調用函數f(b),f(a)在運行過程中的變數就是分配在棧中,通過在調用f(b)前,會將代碼中用到的R0~Rn寄存器的值保存到棧中,同時將函數的傳入參數寫入到棧中,然後進入f(b)函數,函數f(b)的變數b分配在棧中,當函數運行完畢後,釋放變數b,將棧中存放的f(a)函數的運行的R0~Rn寄存器值恢復到寄存器中,同時f(b)的返回結果存入到棧中,這樣f(a)繼續運行。當一個函數運行完畢後,它在棧中分配的臨時變數會全部釋放。
對於中斷也是一樣的,中斷發生時,也是一個函數打斷了另一個函數的運行,這種現場的保存(即寄存器的值),都是通過棧來完成的。所以棧的作用有:
三、Heap區
全局變數分配的內存在代碼整個運行周期內都是有效的,而在棧區分配的內存在函數調用完成後,就會釋放。這兩種內存模型都是由編譯器決定它的使用,代碼是無法控制的。那有沒有內存是由用戶控制的,要用時,就自由分配,不用時,就自行釋放?答案是肯定的,這部分內存就是堆。
用戶需要使用的動態內存,就是通過malloc函數,調用分配的,在沒有釋放前,可一直由代碼使用。當這部分內存不再需要使用時,可以通過free函數進行釋放,將它歸還到堆中。從這中可以看出,堆的內存,是按需分配的。這就是賦予了代碼很大的自由度,但這也是會帶來負作用的,比如:內存碎片化導致的malloc失敗;忘記釋放內存導致的內存泄露,而這些往往是致命的失誤。
四、Code區
代碼區就是編譯後機器指令,這些指令決定了功能的執行。我們編譯的代碼一般是下載進flash中,但是運行,卻有兩種方式:在RAM中運行和在ROM中運行。 在RAM中運行,即是boot啟動後,將flash中的代碼復制到RAM中,然後PC指針在指到RAM中的代碼中開始運行。 有時在調試時,我們可以直接將代碼下載進RAM中運行進行調試,這樣加快調試速度。便是大部分的情況我們的代碼是從flash中開始運行的。
五、常量區
代碼中的常量,一部分是作為立即數,在代碼區中,但是像定義的字元串、給某數組賦值的一串數值,這些常量,就存在常量區,我們常用const來定義一個常量,即該變數不能再必變。這部分的變數,編譯器一般將它定義的flash中。
六、各個區域大小的是如何決定的:
code區和const區:是由代碼的大小和代碼中常量的多少來決定的。
bss區和data區:這是由代碼中定義的全局變數和局部變數的多少來決定的。
stack區:這個可以由使用都自行定義大小,但使用都要根據自已代碼的情況,評估出一個合理的值,再定義其大小,如果定義的太小,很容易爆棧,導至代碼異常,但是如果定義的太大,就容易浪費內存。
heap區:RAM剩下的部分,編譯器就會作為堆區使用。
七、嵌入式代碼一般啟動過程
以STM32為例,通過分析其匯編啟支代碼,大致可以分為以下幾個步驟:
如果大家想看編譯扣,代碼文件的組成,可以查看統後生的map文件,裡面有詳細的數據,包括各個函數的分配內存,BSS,Data,Stack,Heap,Text的分配情況。
如果相要了解詳細的代碼啟動過程,可看它的啟動匯編文件。
⑤ C語言程序結構的特點是什麼由哪些基本部分組成
C語言程序結構的特點是順序結構、選擇結構、循環結構。
1、順序結構,默認的流程結構,按照書寫順序執行每一條語句。
2、選擇結構,對給定的條件進行判斷,再根據判斷結果來決定執行那一段代碼。
3、循環結構,在給定條件成立的情況下,反復執行某一段代碼。只有滿足條件是才會執行循環體,特別注意是否進入了死循環。
(5)c編譯包括幾個部分擴展閱讀
C語言程序數據類型關鍵字
short:修飾int,短整型數據,可省略被修飾的int。(K&R時期引入)
long:修飾int,長整型數據,可省略被修飾的int。(K&R時期引入)
long long:修飾int,超長整型數據,可省略被修飾的int。(C99標准新增)
signed:修飾整型數據,有符號數據類型。(C89標准新增)
unsigned:修飾整型數據,無符號數據類型。(K&R時期引入)
restrict:用於限定和約束指針,並表明指針是訪問一個數據對象的唯一且初始的方式。(C99標准新增)
⑥ 一個C語言程序是由哪幾個部分組成,每一個
1、頭文件:頭文件包含程序中要調用的庫函數。例如#include<stdio.h>
2、main函數:程序的主體部分,是整個C程序中必不可少的一部分。
3、若干個子函數。需要實現諸多功能,如果僅在mian()函數中編輯,會造成程序可讀性變差。
(6)c編譯包括幾個部分擴展閱讀:
計算機程序(Computer Program),港、台譯做電腦程式。計算機程序是一組計算機能識別和執行的指令,運行於電子計算機上,滿足人們某種需求的信息化工具。
程序是一個指令序列。
程序的核心是演算法。
演算法是指對某些問題的嚴格的解釋方法,一般的,一個演算法擁有以下特點:
1,有窮性:演算法必須保證在執行有限步驟後結束。
2,可行性:演算法是確切可行的,即使在數學中,該演算法可行,但若在實際應用中,程序不可以被執行,那麼 ,該演算法也是不具有可行性的。
3,確切性:演算法的每一個步驟必須具有明確的意義。
4,輸入:一個演算法必須要有0個或多個輸入。
5,輸出:一個演算法必須要有1個或多個輸出。
參考資料來源:網路-計算機程序
網路-C語言
⑦ C語言文件的編譯與執行的四個階段並分別描述
開發C程序有四個步驟:編輯、編譯、連接和運行。
任何一個體系結構處理器上都可以使用C語言程序,只要該體系結構處理器有相應的C語言編譯器和庫,那麼C源代碼就可以編譯並連接到目標二進制文件上運行。
1、預處理:導入源程序並保存(C文件)。
2、編譯:將源程序轉換為目標文件(Obj文件)。
3、鏈接:將目標文件生成為可執行文件(EXE文件)。
4、運行:執行,獲取運行結果的EXE文件。
(7)c編譯包括幾個部分擴展閱讀:
將C語言代碼分為程序的幾個階段:
1、首先,源代碼文件測試。以及相關的頭文件,比如stdio。H、由預處理器CPP預處理為.I文件。預編譯的。文件不包含任何宏定義,因為所有宏都已展開,並且包含的文件已插入。我歸檔。
2、編譯過程是對預處理文件進行詞法分析、語法分析、語義分析和優化,生成相應的匯編代碼文件。這個過程往往是整個程序的核心部分,也是最復雜的部分之一。
3、匯編程序不直接輸出可執行文件,而是輸出目標文件。匯編程序可以調用LD來生成可以運行的可執行程序。也就是說,您需要鏈接大量的文件才能獲得「a.out」,即最終的可執行文件。
4、在鏈接過程中,需要重新調整其他目標文件中定義的函數調用指令,而其他目標文件中定義的變數也存在同樣的問題。