gcc交叉編譯器
1. 交叉編譯器的舉例
交叉編譯
1、在Windows PC上,利用ADS(ARM開發環境),使用armcc編譯器,則可編譯出針對ARM CPU的可執行代碼。
2、在linux PC上,利用arm-linux-gcc編譯器,可編譯出針對Linux ARM平台的可執行代碼。
3、在Windows PC上,利用cygwin環境,運行arm-elf-gcc編譯器,可編譯出針對ARM CPU的可執行代碼。
4、在Windows系統上,利用Keil Uvison工具,開發出運行在89C51單片機上的程序。
5、在Windows系統上,利用CodeWarrior IDE工具,開發出運行在Freescale XS128單片機上的程序。
2. LINUX交叉編譯工具鏈和GCC是什麼關系啊
編譯工具鏈一般最簡化的為 binutils + gcc + glibc + kernel-header 組合的環境。
GCC 就是編譯器,他的輸出每次安裝只能有針對一個架構的指令輸出。如果要多個架構輸出,那就要裝多個 GCC ,所以編譯工具鏈裡面會有一個 GCC 。
交叉編譯就是跨架構編譯,編譯出來的程序不能在本機執行(當然有例外情況)。所以這個時候就需要交叉編譯工具鏈。
工具鏈光有 GCC 是不行的,還需要一個 binutils 的二進制連接器,以及一個最基本的目標架構的 C 庫,C 庫還需要一個目標架構的內核源代碼才能完全工作(當然不是必須的,但編譯有的時候需要)
又因為 GCC 、binutils 不能實現單軟體同時多架構輸出,所以需要單獨另裝,又加上 C 庫和內核頭文件需要目標架構的東西而不能用本機本地架構的數據。
所以一個交叉編譯工具鏈就是針對目標架構准備的單獨安裝單獨使用的 binutils + gcc + glibc + kernel-header 的集合了。
PS:這個 kernel-header 並不一定就是 Linux ,他還可以是別的系統核心開發庫,比如 FreeBSD 。
3. gcc交叉編譯怎麼找頭文件及lib庫的
是在specs裡面讀取的路徑信息。
命令行中鍵入 gcc -v
Reading specs from /usr/lib/gcc/i686-pc-cygwin/3.4.4/specs
Configured with: /usr/build/package/orig/test.respin/gcc-3.4.4-3/configure --ver
bose --prefix=/usr --exec-prefix=/usr --sysconfdir=/etc --libdir=/usr/lib --libe
xecdir=/usr/lib --mandir=/usr/share/man --infodir=/usr/share/info --enable-langu
ages=c,ada,c++,d,f77,pascal,java,objc --enable-nls --without-included-gettext --
enable-version-specific-runtime-libs --without-x --enable-libgcj --disable-java-
awt --with-system-zlib --enable-interpreter --disable-libgcj-debug --enable-thre
ads=posix --enable-java-gc=boehm --disable-win32-registry --enable-sjlj-exceptio
ns --enable-hash-synchronization --enable-libstdcxx-debug
Thread model: posix
gcc version 3.4.4 (cygming special, gdc 0.12, using dmd 0.125)
注意「--prefix=/usr」 以及「--libdir=/usr/lib 」
表示gcc ld as 等可執行文件安裝在/usr/bin,而libc.a 等文件是在/usr/lib中。
解壓縮交叉編譯器時,也是要解壓縮在在--prefix 指定的目錄下。
比如 下載了arm-linux 的交叉編譯器cross-3.3.2.tar.bz2,解壓縮之後,運行 arm-linux-gcc -v
得到 --prefix=/usr/local/arm。那麼就要把 bin lib 等所有的文件和文件夾到/usr/local/arm目錄下。
否則到時候運行arm-linux-gcc hello.c會提示找不到stdio.h 或者 lib.so.6 等
HOWTO Use the GCC specs file
About Specs file
The "gcc" program invoked by users is a convenient front-end driver executable which will invoke other programs in the background such as cc1, as or ld to do its work according to the command line parameter given. A specs file is plain text used to control the default behavior for the "gcc" front-end. The specs file is usually built-in but for flexibility purposes, it can be overridden with an external version.
Basic Specs file modifications
CC will proce a specs file via the following command.
gcc -mpspecs > specs
You may use a text editor of your choice to inspect it. It may be confusing at first, but there are many places of interest. To use the specs file, invoke gcc with -specs= or place it at "/mingw/lib/gcc/mingw32//specs" to make GCC use it by default, where refers to the GCC version installed.
Adding include directories to the search path
& #160;he *cpp: section should be modified. It contains the following by default:
*cpp:
%{posix:-D_POSIX_SOURCE} %{mthreads:-D_MT}
If "z:\libx\include" needs to be added to the GCC includes search path, it should be changed to the following
*cpp:
%{posix:-D_POSIX_SOURCE} %{mthreads:-D_MT} -I/z/libx/include
Adding lib directories to the search path
& #160;he *link_libgcc: section should be modified. It contains the following by default:
*link_libgcc:
%D
& #160;f "z:\libx\lib" needs to be added to the GCC library search path, it should be changed to the following
*link_libgcc:
%D -L/z/libx/lib
4. 什麼是GCCGCC有什麼作用
GCC(GNU Compiler Collection,GNU編譯器套件),是由 GNU 開發的編程語言編譯器。它是以GPL許可證所發行的自由軟體,也是 GNU計劃的關鍵部分。
GCC原本作為GNU操作系統的官方編譯器,現已被大多數類Unix操作系統(如Linux、BSD、Mac OS X等)採納為標準的編譯器,GCC同樣適用於微軟的Windows。GCC是自由軟體過程發展中的著名例子,由自由軟體基金會以GPL協議發布。
GCC功能與作用:
1、預處理
命令gcc首先調用cpp進行預處理,在預處理過程中,對源代碼文件中的文件包含(include)、預編譯語句(如宏定義define等)進行分析。
2、編譯
用GCC編譯C/C++代碼時,它會試著用最少的時間完成編譯並且編譯後的代碼易於調試。易於調試意味著編譯後的代碼與源代碼有同樣的執行順序,編譯後的代碼沒有經過優化。
3、連接
當所有的目標文件都生成之後,gcc就調用ld來完成最後的關鍵性工作,這個階段就是連接。在連接階段,所有的目標文件被安排在可執行程序中的恰當的位置,同時,該程序所調用到的庫函數也從各自所在的檔案庫中連到合適的地方。
4、匯編
匯編過程是針對匯編語言的步驟,調用as進行工作,一般來講,.S為後綴的匯編語言源代碼文件和匯編、.s為後綴的匯編語言文件經過預編譯和匯編之後都生成以.o為後綴的目標文件。
(4)gcc交叉編譯器擴展閱讀:
gcc所遵循的部分約定規則:
1、.c為後綴的文件,C語言源代碼文件。
2、.a為後綴的文件,是由目標文件構成的檔案庫文件。
3、.h為後綴的文件,是程序所包含的頭文件。
4、.i 為後綴的文件,是C源代碼文件且不應該對其執行預處理。
5、.m為後綴的文件,是Objective-C源代碼文件。
6、.o為後綴的文件,是編譯後的目標文件。
7、.s為後綴的文件,是匯編語言源代碼文件。
5. arm-linux-gcc交叉編譯器的製作,以及版本選擇問題。
,需要必須有足夠動經驗來支持。
另外,用 RH9 的都是高手,我想你的知識不需要來提問了吧?
1、在 PC 上編譯 arm 的程序當然需要較差編譯器,這個需要自己安裝,或者著現成的交叉編譯器環境,一般是一個特殊參數編譯出來的 gcc + binutils + glibc + linux-header。這個每個人動環境不同,一般都需要自己編譯一個,當然沒有特殊需求,也可以找現成的。不過很難找,因為這套環境還要和你動系統搭配,不然環境不匹配,連這個環境都不能運行,那就更談不上編譯東西了。
有關自己編譯搭建交叉編譯環境,可以看看一個特殊的 Linux 發行版 LFS 的分支: CLFS 。
2、移植分很多意思,移植有可能就意味著這套源代碼不能在目標系統上面編譯,需要你根據相應的知識去修改源代碼來讓這套代碼適應目標編譯器的要求,比如源代碼有 SSE4 的優化,這套程序在非 SSE4 CPU 上無法編譯運行,但目標機器連 SSE1 都不支持。那麼就需要移植。
或者移植僅僅是根據新的環境進行編譯,不需要進行源代碼修改,只需要進行一下編譯就能運行的程序,也可以稱為移植,就是從一個環境、架構 -》另一個環境、架構。都可以稱為移植,但真正的移植意味著修改程序源代碼來適應新環境。你說的這種移植是最簡單的移植。
3、決定目標硬體環境 -》搭建目標編譯器 -》製作目標環境(內核,基礎軟體庫)-》進行應用移植(移植需要的軟體、主應用程序)-》搭建系統文件系統 -》導入目標系統-》啟動目標系統&應用。說起來很簡單,因為這是完全沒有問題的條件下。
至於超級終端。那是用來控制目標系統的。目標系統有可能不能插鍵盤滑鼠顯示器,這就需要一個遠程網路鏈接來進行控制。以及通過遠程鏈接來發送數據。這都需要終端的支持。
虛擬機下面進行開發,不能發揮你的計算機的性能。而且因為隔著 VMware 的軟體模擬層,可能還不會很方便的讓你鏈接目標設備。
至於用 socket ,我還沒見到你的目標需要這個東西,因為所有的東西都是現成的源代碼。不需要你從 0 開始寫,當然你想自己寫一個系統內核,或者伺服器程序,或者全套的系統+應用,我絕對不攔你,但希望你寫完這套東西,能把源代碼發布出來。
ads 可以認為是一個支持環境,他本身不是一個系統的開發 SDK 。
-------------------------------------
ads 沒用過,印象里他還有模擬器,調試器什麼的程序。功能上要比 Linux 開發環境,WinCE 環境下面的東西更多更偏向於硬體方面,畢竟 ads 是 arm 出品的,不太可能偏向於軟體部分設計。Linux 和 WinCE 都是系統而不是硬體工具。
你可以認為交叉編譯器是一個應用程序,一個輸出器。把源代碼輸出為 arm 的代碼,這個應用程序的輸出,是靠他自己的環境,而不是當前系統的環境的。
當前系統的各個軟體的版本,不能影響交叉編譯器輸出的環境(理論上,現實有的時候總是從別的地方給你打擊……),交叉編譯器一般至少有 gcc 、binutils 、glibc 庫、linux kernel 頭文件。
在軟體需求上。
頭文件誰都不依賴,glibc 只需要內核頭文件,其他程序全都依賴於 glibc 。也就是所有程序都不依賴內核,僅僅是依賴於內核頭文件。
gcc 和 binutils 是把程序源代碼根據上面各個環節的需提供的功能來輸出為上面環節裡面的二進製程序。依賴你當前環境的,只有 gcc 和 binutils 兩個程序的執行、控制環節。只有他們兩個依賴的,而不是你的交叉編譯後的程序。
至於編譯器版本的選擇,新版本功能更好,舊版本兼容更好。
這個要看你的實際需要了。應用程序源代碼也調編譯器的,同時也依賴於軟體庫的功能。
arm 開發建議穩定、兼容優先。當然也可以嘗試最新的編譯環境,來獲取更好的優化(前提是還有什麼代碼優化的話)。
另外,團IDC網上有許多產品團購,便宜有口碑
6. cygwin 中如何安裝arm-linux-gcc交叉編譯器
交叉編譯工具鏈作為嵌入式Linux開發的基礎,直接影響到嵌入式開發的項目進度和完成質量。由於目前大多數開發人員使用Windows作為嵌入式開發的宿主機,在Windows中通過安裝VMware等虛擬機軟體來進行嵌入式Linux開發,這樣對宿主機的性能要求極高。Cygwin直接作為Windows下的軟體完全能滿足嵌入式Linux的開發工作,對硬體的要求低及方便快捷的特點成為嵌入式開發的最佳選擇。
目前網路上Cygwin下直接可用的交叉編譯器寥寥無幾且版本都比較低,不能滿足開源軟體對編譯器版本依賴性的要求(如低版本工具鏈編譯U-Boot出現軟浮點問題等);Crosstool等交叉工具鏈製作工具也是更新跟不上自由軟體版本的進度;同時系統介紹Cygwin下製作交叉編譯器方面的資料很少。針對上述情況,基於最新版gcc等自由軟體構建Cygwin下的交叉編譯器顯得尤為迫切和重要。
構建前准備工作
首先Cygwin下必須保證基本工具比如make}gcc等來構建bootstrap-gcc編譯器,這可以在安裝Cygwin時選擇安裝。參照gcc等安裝說明文檔來在Cygwin下查看是否已經安裝,如輸入gcc --v等。
源碼下載
gcc-4.5.0的編譯需mpc的支持,而mpc又依賴gmp和mpfr庫。從各個項目官方網站上下載的最新的源碼:
binutils-2.20. l .tar.bz2
gmp-S.O. l .tar.bz2
mpc-0.8.2.tar.gz
mpfr-3.O.O.tar.bz2
gcc-4.S.O.tar.bz2
linux-2.6.34.tar.bz2
glibc-2.11.2.tar.bz2
glibc-ports-2. l l .tar.bz2
gdb-7. l.tar.bz2
設置環境變數
HOST:工具鏈要運行的目標機器;BUILD:用來建立工具鏈的機器;TARGET工具鏈編譯產生的二進制代碼可以運行的機器。
BUILD=i686-pc-cygwin
HOST=i686-pc-cygwin TARGET=arm-linux
SYSROOT指定根目錄,$PREFIX指定安裝目錄。目標系統的頭文件、庫文件、運行時對象都將被限定在其中,這在交叉編譯中有時很重要,可以防止使用宿主機的頭文件和庫文件。本文首選$SYSROOT為安裝目錄,$PREFIX主要作為glibc庫安裝目錄。
SYSROOT=/cross-root
PREFIX=/cross-root/arm-linux
由於GCC-4.5.0需要mpfr,gmp,mpc的支持,而這三個庫又不需要交叉編譯,僅僅是在編譯交叉編譯鏈時使用,所以放在一個臨時的目錄。
TEMP_PREFIX=/build-temp
控制某些程序的本地化的環境變數:
LC ALL=POSIX
設置環境變數:
PATH=$SYSROOT/bin:兒in:/usr/bin
設置編譯時的線程數f31減少編譯時間:
PROCS=2
定義各個軟體版本:
BINUTILS V=2.20.1
GCC V=4.5.0
GMP V=5.0.1
MPFR V=3.0.0
MPC V二0.8.2
LINUX V二2.6.34
GLIBC V=2.11.2
GLIBC-PORTS V=2.11
GDB V=7.1
構建過程詳解
鑒於手工編譯費時費力,統一把構建過程寫到Makefile腳本文件中,把其同源碼包放在同一目錄下,執行make或順次執行每個命令即可進行無人值守的編譯安裝交叉工具
鏈。以下主要以Makefile執行過程為主線進行講解。
執行「make」命令實現全速運行
可在Cygwin的Shell環境下執行「make>make.log 2>&1」命令把編譯過程及出現的錯誤都輸出到make.log中,便於查找:
all:prerequest install-deps install-cross-stage-one install-
cross-stage-two
預處理操作
"make prerequest',命令實現單步執行的第一步,實現輸出變數、建立目錄及解壓源碼包等操作。0'set十h」關閉bash的Hash功能,使要運行程序的時候,shell將總是搜索PATH里的目錄[4]。這樣新工具一旦編譯好,shell就可以在$(SYSROOT)/bin目錄里找到: prerequest:
set +h&&mkdir -p $(SYSROOT)/bin&&
mkdir -p $(PREFIX)/include&&
mkdir -p $(TEMP一REFIX)&&
export PATH LCes ALL&&
tar -xvf gmp-$(GMP_V).tar.bz2&&
tar -xvf mpfr-$(MPFR_V).tar.bz2&&
tar -xvf mpc-$(MPC_V).tar.gz&&
tar -xvf binutils-$(BINUTILS_V).tar.bz2&&
tar -xvf gcc-$(GCC_V).tar.bz2&&
tar -xvf linux-$(LINUX_V).tar.bz2&&
tar -xvf glibc-$(GLIBC_V).tar.bz2&&
tar -xvf glibc-ports-$(GLIBC-PORTS_V).tar.bz2&&
my glibc-ports-$(GLIBC-PORTS_V)
glibc-$(GLIBC_V)/ports&&
tar -xvf gdb-$(GDB V).tar.bz2
非交叉編譯安裝gcc支持包mpc
00make install-deps」命令實現單步執行的第二步,實現mpc本地編譯,mpc依賴於gmp和mpfr
install-deps:gmp mpfr mpc
gmp:gmp-$(GMP_V)
mkdir -p build/gmp&&cd build/gmp&&
../../gmp-*/configure
--disable-shared --prefix=$(TEMP_PREFIX)&&
$(MAKE)一$(PROCS)&&$(MAKE) install
mpfr:mpfr-$(MPFR_V)
mkdir -p b-uild/mpfr&&cd build/mpfr&&
../..//mpfr-*/configure
LDF'LAGS="-Wl,-search_paths_first」--disable-shared
--with-gmp=$(TEMP_PREFIX)
--prefix=$(TEMP_PREFIX)&&
$(MAKE)一$(PROCS) all&&$(MAKE) install
mpc: mpc-$(MPC_V) gmp mpfr
mkdir -p build/mpc&&cd build/mpc&&
../../mpc-*/configure
--with-mpfr=$(TEMP PREFIX)
--with-gmp=$(TEMP_PREFIX)
--prefix=$(TEMP_PREFIX)&&
$(MAKE)一$(PROCS)&&$(MAKE) install
交叉編譯第一階段
"make install-cross-stage-one',命令實現單步執行的第三步,編譯安裝binutils,bootstrap-gcc和獲取Linux內核頭文件:
install-cross-stage-one:cross-binutils cross-gcc get-kernel-headers
編譯安裝binutils
cross-binutils: binutils-$(BINUTILS_ V)
mkdir -p build/binutils&&cd build/binutils&&
../..//binutils-*/configure --prefix=$(SYSROOT)
--target=$(TARGET)--disable-nls&&
$(MAKE)j$(PROCS)&&$(MAKE) install
編譯安裝bootstrap-gcc。使用一disable-shared參數的意思是不編譯和安裝libgcc_ eh.a文件。glibc軟體包依賴這個庫,因為它使用其內部的一lgcc_eh來創建系統[6]。這種依賴
性,可通過建立一個指向libgcc.a符號鏈接得到滿足,因為該文件最終將含有通常在libgcc- eh.a中的對象(也可通過補丁文件實現)。
cross-gcc:gcc-$(GCC_V)
mkdir -p build/gcc&&cd build/gcc&&
二//gcc-*/configure
--target=$(TARGET)--prefix=$(SYSROOT)
--disable-nls --disable-shared --disable-multilib
--disable-decimal-float--disable-threads
--disable-libmudflap --disable-libssp
--disable-libgomp --enable-languages=c
--with-gmp=$(TEMP_PREFIX)
--with-mpfr=$(TEMP_PREFIX)
--with-mpc=$(TEMP_PREFIX)&&
$(MAKE) -j$(PROCS)&&$(MAICE) install&&
In -vs libgcc.a'arm-linux-gcc -print-libgcc-file-name I
sed's/libgcc/& eh/'}
獲取Linux內核頭文件:
get-kernel-headersainux-$(LINUX_V)
cd linux-$(LINUX_V)&&
$(MAICE) mrproper&&$(MAKE) headers check&&
$(MAKE) ARCH=arm&&
INSTALLes HDR_ PATH=dest headers_ install&&
find dest/include
(-name .install一。-name ..installNaNd)-delete&&
cp -rv desdinclude/* $(PREFIX)/include
交叉編譯第二階段
編譯安裝glibc、重新編譯安裝binutils、完整編譯安裝gcc和編譯安裝gdb o "make install-cross-stage-two',命令實現單步執行的第四步: install-cross-stage-two:cross-glibc cross-rebinutils cross-g++ cross-gdb
編譯安裝glibca glib。的安裝路徑特意選為$(PREFIX),與gcc更好找到動態鏈接庫也有關系,選在$(SYSROOT)提示找不到crti.o; glibc已經不再支持i386; glibc對ARM等的處理器的支持主要通過glibc-ports包來實現;正確認識大小寫敏感(Case Sensitive)和大小寫不敏感(CaseInsensitive)系統,大小寫敏感問題主要影響到glibc,是交叉編譯glibc成功的關鍵:Cygwin幫助手冊中可知Cygwin是默認大小寫不敏感的n},但是UNIX系統是大小寫敏感的,這也是Cygwin和UNIX類系統的一個區別。通過作者自行參考製作的glibc-2.11.2-cygwin.patch補T使glibc變為Case-Insensitive,此補丁主要是對大小寫敏感問題改名來實現。
交叉編譯過程中安裝的鏈接器,在安裝完Glibc以前都無法使用。也就是說這個配置的forced unwind支持測試會失敗,因為它依賴運行中的鏈接器。設置libc_ cvforced unwind=yes這個選項是為了通知configure支持force-unwind,而不需要進行測試。libc cv_c_cleanup=yes類似的,在configure腳本中使用libc_cv_c cleanup=yes,以便配置成跳過測試而支持C語言清理處理。
cross-glibc:glibc-$(GLIBC_V)
cd glibc-$(GLIBC_V)&&
patch -Np 1 –i...//glibc-2.11.2-cygwin.patch&&
cd..&&mkdir -p build/glibc&&
cd build/glibc&&
echo"libc cv_forcedes unwind=yes">config.cache&&
echo "libc cv_c_cleanup=yes">>config.cache&&
echo "libc cv_arm_tls=yes">>config.cache&&
../../glibc-*/configure --host=$(TARGET)
--build=$(../OneScheme/glibc-2.11.2/scripts/config.guess)
--prefix=$(PREFIX)--disable-profile
--enable-add-ons --enable-kernel=2.6.22.5
--with-headers=$(PREFIX)/include
--cache-file=config.cache&&
$(MAKE)&&$(MAKE) install
重新編譯安裝binutils。編譯之前要調整工具鏈,使其
指向新生成的動態連接器。
調整工具鏈:
SPECS=
'dirname $(arm-linux-gcc -print-libgcc-file-name)'/specs
arm-linux-gcc -mpspecs
sed -e 's@/lib(64)\?/ld@$(PREFTX)&@g' -e ,}/}}*cPP}$/{n;s,$,-isystem $(PREFIX)/include,}"
>$SPECS
echo "New specs file is: $SPECS"
unset SPECS
測試調整後工具鏈:
echo 'main(川』>mmy.c
arm-linux-gcc
-B/cross-root/arm-linux/lib mmy.c
readelf -1 a.out I grep』:/cross-roobarm-linux'
調整正確的輸出結果:
[Requesting program interpreter: /tools/lib/ld-linux.so.2j
一切正確後刪除測試程序:
rm -v mmy.c a.out
重新編譯binutils。指定--host,--build及--target,否則配置不成功,其config.guess識別能力不如gcc做的好。
cross-rebinutils: binutils-$(BINUTILS_V)
mkdir -p build/rebinutils&&
cd build/rebinutils&&CC="$(TARGET)-gcc
-B/cross-roodarm-linux/lib/"&&AR=$(TARGET)-ar&&
RANLIB=$(TARGET)-ranlib&&../..//binutils-*/configure
--host=$(HOST)--build=$(BUILD)--target=$(TARGET)
--prefix=$(SYSROOT)--disable-nls
--with-lib-path=$(PREFIX)/lib&&
$(MAKE)--$(PROCS)&&$(MAKE) install
高於4.3版的gcc把這個編譯當作一個重置的編譯器,並且禁止在被一prefix指定的位置搜索startfiles。因為這次不是重置的編譯器,並且$(SYSROOT)目錄中的startfiles對於創
建一個鏈接到$$(SYSROOT)目錄庫的工作編譯器很重要,所以我們使用下面的補丁,它可以部分還原gcc的老功能tai . patch -Npl –i../gcc-4.5.0-startfiles_fix-l.patch
在正常條件下,運行gcc的fixincludes腳本,是為了修復可能損壞的頭文件。它會把宿主系統中已修復的頭文件安裝到gcc專屬頭文件目錄里,通過執行下面的命令,可以抑
制fixincludes腳本的運行[9](此時目錄為/gcc-4.5.0)。
cp -v gcc/Makefile.in{,.orig}
sed 's@\./fixinc\.sh@-c true@'
gcc/Makefile.in.orig > gcc/Makefile.in
下面更改gcc的默認動態鏈接器的位置,使用已安裝在/cross-root/ann-linux目錄下的鏈接器,這樣確保在gcc真實的編譯過程中使用新的動態鏈接器。即在編譯過程中創建的所有
二進制文件,都會鏈接到新的glibc文件
for file in
$(find gcc/config -name linux64.h-o -name linux.h –o -name sysv4.h)
do cp -uv $file{,.orig}
sed -a 's@/lib(64)?(32)?/Id@/cross-root/arm-linux&@g』-e's@/usr@/cross-rootlarm-linux@g' $file.orig>$file echo『
#undef STANDARD INCLUDE DIR
#define STANDARD_ INCLUDE DIR "/cross-root/arm-linux/include"
#define STANDARD STARTFILE PREFIX 1 "/cross-root/arm-linux/lib"
#define STANDARD_ STARTFILE_ PREFIX_ 2」」』>>$file
touch $file.orig done
完整編譯安裝gcc。最好通過指定--libexecdir更改libexecdir到atm-linux目錄下。--with-local-prefix選項指定gcc本地包含文件的安裝路徑此處設為$$(PREFIX),安裝後就會在內核頭文件的路徑下。路徑前指定$(Pwd)則以當前路徑為基點,不指定則默認以/home路徑為基點,這點要注意。
cross-g++:gcc-$(GCC-)
mkdir -p build/g十+&&cd build/g++&&
CC="$(TARGET)-gcc AR=$(TARGET)-ar&&
-B/cross-roodarm-linux/lib/"&&
RANLIB=$(TARGET)-ranlib&&
..//gcc-*/configure
--host=$(HOST)--build=$(BUILD)--target=$(TARGET)
--prefix=$(SYSROOT)--with-local-prefix=$(PREFIX)
--enable-clocale=gnu --enable-shared
--enable-threads=posix --enable -cxa_atexit
--enable-languages=c,c++--enable-c99
--enable-long-long --disable-libstdcxx-pch
--disable-libunwind-exceptions
--with-gmp=$(TEMP_PREFIX)
--with-mpfr=$(TEMP_PREFIX)
--with-mpc=$(TEMP_PREFIX)&&
$(MAKE) LD_IBRARY_ATH=
$(pwd)/$(../../gcc-4.5.0/config.guess)/libgcc&&
$(MAKE) install
編譯安裝gdb,至此完成整個工具鏈的製作。
cross-gdb: gdb-$(GDB V)
mkdir -p build/gdb&&cd build/gdb&&
../../gdb-*/configure --prefix=$(SYSROOT)
--target=$(TARGET)--disable-werror&&
$(MAKE)-j$(PROCS)&&$(MAKE) install
「make clean」命令清除編譯生成的文件和創建解壓的文件夾
.PHONY:clean
dean:
rm -fr $(TEMP_PREFIX) build
binutils-$(BINUTIL,S_V) gcc-$(GCC_V)
glibc-$(NEWL.IB_V) gdb-$(GDB_V)
gmp-$(GMP_V) mpc-$(MPC_V) mpfr-$(MPFR_V)
工具鏈測試
命令行中輸入以下內容:
echo 'main(){}』>mmy.c
arm-linux-gcc -o mmy.exe mmy.c
file mmy.exe
運行正常的結果:
mmy.exe: ELF 32-bit LSB executable, ARM, version 1,for GNU/Linux 2.6.22, dynamically linked (uses shared libs),not stripped.
7. 如何製作arm-linux-gcc編譯工具
一、下載源文件
源代碼文件及其版本:
binutils-2.19.tar.bz2, gcc-core-4.4.4.tar.bz2 gcc-g++-4.4.4.tar.bz2 Glibc-2.7.tar.bz2 Glibc-ports-2.7.tar.bz2 Gmp-4.2.tar.bz2 mpfr-2.4.0.tar.bz2mpc-1.0.1.tar.gz Linux-2.6.25.tar.bz2 (由於我在編譯出錯的過程中,根據出錯的信息修改了相關的C代碼,故而沒有下載相應的補丁)
一般一個完整的交叉編譯器涉及到多個軟體,主要包括bilinguals、cc、glibc等。其中,binutils主要生成一些輔助工具;gcc是用來生成交叉編譯器,主要生成arm-linux-gcc交叉編譯工具,而glibc主要提供用戶程序所需要的一些基本函數庫。
二、建立工作目錄
編譯所用主機型號 fc14.i686,虛擬機選的是VM7.0,Linux發行版選的是Fedora9,
第一次編譯時用的是root用戶(第二次用一般用戶yyz), 所有的工作目錄都在/home/yyz/cross下面建立完成,首先在/home/yyz目錄下建立cross目錄,然後進入工作目錄,查看當前目錄。命令如下:
創建工具鏈文件夾:
[root@localhost cross]# mkdir embedded-toolchains
下面在此文件夾下建立如下幾個目錄:
setup-dir:存放下載的壓縮包;
src-dir:存放binutils、gcc、glibc解壓之後的源文件;
Kernel:存放內核文件,對內核的配置和編譯工作也在此完成;
build-dir :編譯src-dir下面的源文件,這是GNU推薦的源文件目錄與編譯目錄分離的做法;
tool-chain:交叉編譯工具鏈的安裝位;
program:存放編寫程序;
doc:說明文檔和腳本文件;
下面建立目錄,並拷貝源文件。
[root@localhost cross] #cd embedded- toolchains
[root@localhost embedded- toolchains] #mkdir setup-dir src-dir kernel build-dir tool-chain program doc
[root@localhost embedded- toolchains] #ls
build-dir doc kernel program setup-dir src-dir tool-chain
[root@localhost embedded- toolchains] #cd setup-dir
拷貝源文件:
這里我們採用直接拷貝源文件的方法,首先應該修改setup-dir的許可權
[root@localhost embedded- toolchains] #chmod 777 setup-dir
然後直接拷貝/home/yyz目錄下的源文件到setup-dir目錄中,如下圖:
建立編譯目錄:
[root@localhost setup-dir] #cd ../build-dir
[root@localhost build -dir] #mkdir build-binutils build-gcc build-glibc
三、輸出環境變數
輸出如下的環境變數方便我們編譯。
為簡化操作過程。下面就建立shell命令腳本environment-variables:
[root@localhost build -dir] #cd ../doc
[root@localhost doc] #mkdir scripts
[root@localhost doc] #cd scripts
用編輯器vi編輯環境變數腳本envionment-variables:[root@localhost scripts]
#vi envionment-variables
export PRJROOT=/home/yyz/cross/embedded-toolchains
export TARGET=arm-linux
export PREFIX=$PRJROOT/tool-chain
export TARGET_PREFIX=$PREFIX/$TARGET
export PATH=$PREFIX/bin:$PATH
截圖如下:
執行如下語句使環境變數生效:
[root@localhost scripts]# source ./environment-variables
四、建立二進制工具(binutils)
下面將分步介紹安裝binutils-2.19.1的過程。
[root@localhost script] # cd $PRJROOT/src-dir
[root@localhost src-dir] # tar jxvf ../setup-dir/binutils-2.19.1.tar.bz2
[root@localhost src-dir] # cd $PRJROOT/build-dir/build-binutils
創建Makefile:
[root@localhost build-binutils] #../../src-dir/binutils-2.19.1/configure --target=$TARGET --prefix=$PREFIX
在build-binutils目錄下面生成Makefile文件,然後執行make,make install,此過程比較緩慢,大約需要一個15分鍾左右。完成後可以在$PREFIX/bin下面看到我們的新的binutil。
輸入如下命令
[root@localhost build-binutils]#ls $PREFIX/bin
8. 如何使用arm-linux-gcc交叉編譯器生成map文件
方法/步驟
從網上下載arm-linux-gcc 4.4.3的源碼
進入Linux的終端,將當前目錄設為arm-linux-gcc的下載目錄,輸入tar -xzf arm-linux-gcc-4.4.3.tar.gz,將文件解壓,解壓後會有一個opt的文件夾。
在/usr/local/下建立一個名為arm的文件夾,在終端中輸入命令:cd /usr/local/,回車,然後再輸入命令:mkdir arm,建立arm目錄,並修改該文件夾的屬性為rwx,輸入命令:chmod 777 arm
將之前解壓得到的opt文件壓下的源碼,復制到上一步中創建的arm文件夾下,在終端中輸入命令:sudo cp -r /opt/FriendlyARM/toolschain/4.4.3 /usr/local/arm
到這里已經基本安裝好了,到為了避免每次使用arm-linux-gcc時都要輸入它所在的完整路徑,所以這里我們要修改一下環境變數$PATH。在終端中輸入:sudo gedit /etc/profile,打開profile文件,在最後一行加上「export PATH=$PATH:/usr/local/arm/4.4.3/bin」然後保存文件。
立即使新的環境變數生效,輸入:source /etc/profile。再輸入:echo $PATH查看環境變數,如圖。如果不成功,則直接重新啟動系統,再查看。因為之前我已經安裝過了,為了演示,所以圖中會有兩個/usr/local/arm/4.4.3/bin。
最後檢查是否安裝完成,輸入:arm-linux-gcc -v查看版本信息,如果出現以下信息,則說明安裝成功。
9. gcc編譯器究竟怎麼打開我竟然在gcc的安裝文件夾中找不到gcc的打開文件
你先用vim 或者直接用gedit編寫好程序,然後直接輸入命令就可以了,比如你的程序是helloworld.c,那麼你可以輸入命令:
編譯命令:gcc -o helloworld helloworld.c
運行命令./helloworld
希望這樣的回答對你有幫助!
gcc的使用方法
1。gcc包含的c/c++編譯器
gcc,cc,c++,g++,gcc和cc是一樣的,c++和g++是一樣的,一般c程序就用gcc編譯,c++程序就用g++編譯
2。gcc的基本用法
gcc test.c這樣將編譯出一個名為a.out的程序
gcc test.c -o test這樣將編譯出一個名為test的程序,-o參數用來指定生成程序的名字
3。為什麼會出現undefined reference to 'xxxxx'錯誤?
首先這是鏈接錯誤,不是編譯錯誤,也就是說如果只有這個錯誤,說明你的程序源碼本身沒有問題,是你用編譯器編譯時參數用得不對,你沒有指定鏈接程序要用到得庫,比如你的程序里用到了一些數學函數,那麼你就要在編譯參數里指定程序要鏈接數學庫,方法是在編譯命令行里加入-lm。
4。-l參數和-L參數
-l參數就是用來指定程序要鏈接的庫,-l參數緊接著就是庫名,那麼庫名跟真正的庫文件名有什麼關系呢?
就拿數學庫來說,他的庫名是m,他的庫文件名是libm.so,很容易看出,把庫文件名的頭lib和尾.so去掉就是庫名了。
好了現在我們知道怎麼得到庫名了,比如我們自已要用到一個第三方提供的庫名字叫libtest.so,那麼我們只要把libtest.so拷貝到/usr/lib里,編譯時加上-ltest參數,我們就能用上libtest.so庫了(當然要用libtest.so庫里的函數,我們還需要與libtest.so配套的頭文件)。
放在/lib和/usr/lib和/usr/local/lib里的庫直接用-l參數就能鏈接了,但如果庫文件沒放在這三個目錄里,而是放在其他目錄里,這時我們只用-l參數的話,鏈接還是會出錯,出錯信息大概是:"/usr/bin/ld: cannot find -lxxx",也就是鏈接程序ld在那3個目錄里找不到libxxx.so,這時另外一個參數-L就派上用場了,比如常用的X11的庫,它放在/usr/X11R6/lib目錄下,我們編譯時就要用-L/usr/X11R6/lib -lX11參數,-L參數跟著的是庫文件所在的目錄名。再比如我們把libtest.so放在/aaa/bbb/ccc目錄下,那鏈接參數就是-L/aaa/bbb/ccc -ltest
另外,大部分libxxxx.so只是一個鏈接,以RH9為例,比如libm.so它鏈接到/lib/libm.so.x,/lib/libm.so.6又鏈接到/lib/libm-2.3.2.so,如果沒有這樣的鏈接,還是會出錯,因為ld只會找libxxxx.so,所以如果你要用到xxxx庫,而只有libxxxx.so.x或者libxxxx-x.x.x.so,做一個鏈接就可以了ln -s libxxxx-x.x.x.so libxxxx.so
手工來寫鏈接參數總是很麻煩的,還好很多庫開發包提供了生成鏈接參數的程序,名字一般叫xxxx-config,一般放在/usr/bin目錄下,比如gtk1.2的鏈接參數生成程序是gtk-config,執行gtk-config --libs就能得到以下輸出"-L/usr/lib -L/usr/X11R6/lib -lgtk -lgdk -rdynamic -lgmole -lglib -ldl -lXi -lXext -lX11 -lm",這就是編譯一個gtk1.2程序所需的gtk鏈接參數,xxx-config除了--libs參數外還有一個參數是--cflags用來生成頭文
件包含目錄的,也就是-I參數,在下面我們將會講到。你可以試試執行gtk-config --libs --cflags,看看輸出結果。
現在的問題就是怎樣用這些輸出結果了,最苯的方法就是復制粘貼或者照抄,聰明的辦法是在編譯命令行里加入這個`xxxx-config --libs --cflags`,比如編譯一個gtk程序:gcc gtktest.c `gtk-config --libs --cflags`這樣就差
不多了。注意`不是單引號,而是1鍵左邊那個鍵。
除了xxx-config以外,現在新的開發包一般都用pkg-config來生成鏈接參數,使用方法跟xxx-config類似,但xxx-config是針對特定的開發包,但pkg-config包含很多開發包的鏈接參數的生成,用pkg-config --list-all命令可以列出所支持的所有開發包,pkg-config的用法就是pkg-config pagName --libs --cflags,其中pagName是包名,是pkg-config--list-all里列出名單中的一個,比如gtk1.2的名字就是gtk+,pkg-config gtk+ --libs --cflags的作用跟gtk-config --libs --cflags是一樣的。比如:gcc gtktest.c `pkg-config gtk+ --libs --cflags`。
5。-include和-I參數
-include用來包含頭文件,但一般情況下包含頭文件都在源碼里用#include xxxxxx實現,-include參數很少用。-I參數是用來指定頭文件目錄,/usr/include目錄一般是不用指定的,gcc知道去那裡找,但是如果頭文件不在/usr/include里我們就要用-I參數指定了,比如頭文件放在/myinclude目錄里,那編譯命令行就要加上-I/myinclude參數了,如果不加你會得到一個"xxxx.h: No such file or directory"的錯誤。-I參數可以用相對路徑,比如頭文件在當前目錄,可以用-I.來指定。上面我們提到的--cflags參數就是用來生成-I參數的。
6。-O參數
這是一個程序優化參數,一般用-O2就是,用來優化程序用的,比如gcc test.c -O2,優化得到的程序比沒優化的要小,執行速度可能也有所提高(我沒有測試過)。
7。-shared參數
編譯動態庫時要用到,比如gcc -shared test.c -o libtest.so
8。幾個相關的環境變數
PKG_CONFIG_PATH:用來指定pkg-config用到的pc文件的路徑,默認是/usr/lib/pkgconfig,pc文件是文本文件,擴展名是.pc,裡面定義開發包的安裝路徑,Libs參數和Cflags參數等等。
CC:用來指定c編譯器。
CXX:用來指定cxx編譯器。
LIBS:跟上面的--libs作用差不多。
CFLAGS:跟上面的--cflags作用差不多。
CC,CXX,LIBS,CFLAGS手動編譯時一般用不上,在做configure時有時用到,一般情況下不用管。
環境變數設定方法:export ENV_NAME=xxxxxxxxxxxxxxxxx
9。關於交叉編譯
交叉編譯通俗地講就是在一種平台上編譯出能運行在體系結構不同的另一種平台上,比如在我們地PC平台(X86 CPU)上編譯出能運行在sparc CPU平台上的程序,編譯得到的程序在X86 CPU平台上是不能運行的,必須放到sparc CPU平台上才能運行。
當然兩個平台用的都是linux。
這種方法在異平台移植和嵌入式開發時用得非常普遍。
相對與交叉編譯,我們平常做的編譯就叫本地編譯,也就是在當前平台編譯,編譯得到的程序也是在本地執行。
用來編譯這種程序的編譯器就叫交叉編譯器,相對來說,用來做本地編譯的就叫本地編譯器,一般用的都是gcc,但這種gcc跟本地的gcc編譯器是不一樣的,需要在編譯gcc時用特定的configure參數才能得到支持交叉編譯的gcc。
為了不跟本地編譯器混淆,交叉編譯器的名字一般都有前綴,比如sparc-xxxx-linux-gnu-gcc,sparc-xxxx-linux-gnu-g++ 等等
10。交叉編譯器的使用方法
使用方法跟本地的gcc差不多,但有一點特殊的是:必須用-L和-I參數指定編譯器用sparc系統的庫和頭文件,不能用本地(X86)
的庫(頭文件有時可以用本地的)。
例子:
sparc-xxxx-linux-gnu-gcc test.c -L/path/to/sparcLib -I/path/to/sparcInclude
10. 有沒有人在mac上安裝過linuxx86的交叉編譯器gcc
有。可以通過在Mac上安裝虛擬機或使用Docker等容器技術來模擬Linux環境,並在其中安裝gcc進行交叉編譯,還可以考慮使用MacPorts或逗消Homebrew等包管理器來安裝gcc。Mac是蘋果公司自1984年起以Macintosh開始開發的個人鋒指喚消費型計算機,如:iMac、Macmini、MacbookAir、MacbookPro、銀凱Macbook、MacPro等計算機,是一套完備而獨立的操作系統。